Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(4)2020 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-32102234

RESUMO

Glucose-6-Phosphate Dehydrogenase (G6PD) is a ubiquitous cytoplasmic enzyme converting glucose-6-phosphate into 6-phosphogluconate in the pentose phosphate pathway (PPP). The G6PD deficiency renders the inability to regenerate glutathione due to lack of Nicotine Adenosine Dinucleotide Phosphate (NADPH) and produces stress conditions that can cause oxidative injury to photoreceptors, retinal cells, and blood barrier function. In this study, we constructed pharmacophore-based models based on the complex of G6PD with compound AG1 (G6PD activator) followed by virtual screening. Fifty-three hit molecules were mapped with core pharmacophore features. We performed molecular descriptor calculation, clustering, and principal component analysis (PCA) to pharmacophore hit molecules and further applied statistical machine learning methods. Optimal performance of pharmacophore modeling and machine learning approaches classified the 53 hits as drug-like (18) and nondrug-like (35) compounds. The drug-like compounds further evaluated our established cheminformatics pipeline (molecular docking and in silico ADMET (absorption, distribution, metabolism, excretion and toxicity) analysis). Finally, five lead molecules with different scaffolds were selected by binding energies and in silico ADMET properties. This study proposes that the combination of machine learning methods with traditional structure-based virtual screening can effectively strengthen the ability to find potential G6PD activators used for G6PD deficiency diseases. Moreover, these compounds can be considered as safe agents for further validation studies at the cell level, animal model, and even clinic setting.


Assuntos
Descoberta de Drogas/métodos , Glucosefosfato Desidrogenase/química , Glucosefosfato Desidrogenase/efeitos dos fármacos , Glucosefosfato Desidrogenase/metabolismo , Aprendizado de Máquina , Animais , Domínio Catalítico , Avaliação Pré-Clínica de Medicamentos , Glucosefosfato Desidrogenase/genética , Deficiência de Glucosefosfato Desidrogenase/tratamento farmacológico , Glutationa/metabolismo , Humanos , Simulação de Acoplamento Molecular , NADP/química , NADP/metabolismo , Oxirredução , Estresse Oxidativo , Via de Pentose Fosfato , Domínios e Motivos de Interação entre Proteínas , Difração de Raios X
2.
J Transl Med ; 17(1): 215, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31266509

RESUMO

BACKGROUND: Tumor necrosis factor α (TNFα) is a multifunctional cytokine with a potent pro-inflammatory effect. It is a validated therapeutic target molecule for several disorders related to autoimmunity and inflammation. TNFα-TNF receptor-1 (TNFR1) signaling contributes to the pathological processes of these disorders. The current study is focused on finding novel small molecules that can directly bind to TNFα and/or TNFR1, preventing the interaction between TNFα or TNFR1, and regulating downstream signaling pathways. METHODS: Cheminformatics pipeline (pharmacophore modeling, virtual screening, molecular docking and in silico ADMET analysis) was used to screen for novel TNFα and TNFR1 inhibitors in the Zinc database. The pharmacophore-based models were generated to screen for the best drug like compounds in the Zinc database. RESULTS: The 39, 37 and 45 best hit molecules were mapped with the core pharmacophore features of TNFα, TNFR1, and the TNFα-TNFR1 complex respectively. They were further evaluated by molecular docking, protein-ligand interactions and in silico ADMET studies. The molecular docking analysis revealed the binding energies of TNFα, TNFR1 and the TNFα-TNFR1 complex, the basis of which was used to select the top five best binding energy compounds. Furthermore, in silico ADMET studies clearly revealed that all 15 compounds (ZINC09609430, ZINC49467549, ZINC13113075, ZINC39907639, ZINC25251930, ZINC02968981, ZINC09544246, ZINC58047088, ZINC72021182, ZINC08704414, ZINC05462670, ZINC35681945, ZINC23553920, ZINC05328058, and ZINC17206695) satisfied the Lipinski rule of five and had no toxicity. CONCLUSIONS: The new selective TNFα, TNFR1 and TNFα-TNFR1 complex inhibitors can serve as anti-inflammatory agents and are promising candidates for further research.


Assuntos
Anti-Inflamatórios/isolamento & purificação , Química Computacional/métodos , Descoberta de Drogas/métodos , Complexos Multiproteicos/antagonistas & inibidores , Receptores Tipo I de Fatores de Necrose Tumoral/antagonistas & inibidores , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Anti-Inflamatórios/análise , Ligação Competitiva , Domínio Catalítico/efeitos dos fármacos , Biologia Computacional/métodos , Simulação por Computador , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Ligantes , Modelos Moleculares , Simulação de Acoplamento Molecular/métodos , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Ligação Proteica , Receptores Tipo I de Fatores de Necrose Tumoral/química , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/química , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA