Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neurotoxicology ; 42: 49-57, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24704589

RESUMO

Propofol is a widely used general anesthetic. A growing body of data suggests that perinatal exposure to general anesthetics can result in long-term deleterious effects on brain function. In the developing brain there is evidence that general anesthetics can cause cell death, synaptic remodeling, and altered brain cell morphology. Acetyl-L-carnitine (L-Ca), an anti-oxidant dietary supplement, has been reported to prevent neuronal damage from a variety of causes. To evaluate the ability of L-Ca to protect against propofol-induced neuronal toxicity, neural stem cells were isolated from gestational day 14 rat fetuses and on the eighth day in culture were exposed for 24h to propofol at 10, 50, 100, 300 and 600 µM, with or without L-Ca (10 µM). Markers of cellular proliferation, mitochondrial health, cell death/damage and oxidative damage were monitored to determine: (1) the effects of propofol on neural stem cell proliferation; (2) the nature of propofol-induced neurotoxicity; (3) the degree of protection afforded by L-Ca; and (4) to provide information regarding possible mechanisms underlying protection. After propofol exposure at a clinically relevant concentration (50 µM), the number of dividing cells was significantly decreased, oxidative DNA damage was increased and a significant dose-dependent reduction in mitochondrial function/health was observed. No significant effect on lactase dehydrogenase (LDH) release was observed at propofol concentrations up to 100 µM. The oxidative damage at 50 µM propofol was blocked by L-Ca. Thus, clinically relevant concentrations of propofol induce dose-dependent adverse effects on rat embryonic neural stem cells by slowing or stopping cell division/proliferation and causing cellular damage. Elevated levels of 8-oxoguanine suggest enhanced oxidative damage [reactive oxygen species (ROS) generation] and L-Ca effectively blocks at least some of the toxicity of propofol, presumably by scavenging oxidative species and/or reducing their production.


Assuntos
Acetilcarnitina/farmacologia , Anestésicos Intravenosos/toxicidade , Células-Tronco Neurais/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Propofol/toxicidade , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Dano ao DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Lactase/metabolismo , Mitocôndrias/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Receptores de GABA-A/metabolismo
2.
Reprod Toxicol ; 27(2): 117-32, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19159674

RESUMO

Genistein and ethinyl estradiol (EE(2)) were examined in multigenerational reproductive and chronic toxicity studies that had different treatment intervals among generations. Sprague-Dawley rats received genistein (0, 5, 100, or 500 ppm) or EE(2) (0, 2, 10, or 50 ppb) in a low phytoestrogen diet. Nonneoplastic effects in females are summarized here. Genistein at 500 ppm and EE(2) at 50 ppb produced similar effects in continuously exposed rats, including decreased body weights, accelerated vaginal opening, and altered estrous cycles in young animals. At the high dose, anogenital distance was subtly affected by both compounds, and a reduction in litter size was evident in genistein-treated animals. Genistein at 500 ppm induced an early onset of aberrant cycles relative to controls in the chronic studies. EE(2) significantly increased the incidence of uterine lesions (atypical focal hyperplasia and squamous metaplasia). These compound-specific effects appeared to be enhanced in the offspring of prior exposed generations.


Assuntos
Disruptores Endócrinos/toxicidade , Etinilestradiol/toxicidade , Genisteína/toxicidade , Reprodução/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ingestão de Alimentos/efeitos dos fármacos , Hiperplasia Endometrial/induzido quimicamente , Hiperplasia Endometrial/patologia , Estro/efeitos dos fármacos , Feminino , Tamanho da Ninhada de Vivíparos/efeitos dos fármacos , Metaplasia , Gravidez , Ratos , Ratos Sprague-Dawley , Comportamento Sexual Animal/efeitos dos fármacos , Maturidade Sexual/efeitos dos fármacos , Fatores de Tempo , Útero/efeitos dos fármacos , Útero/patologia , Vagina/efeitos dos fármacos , Vagina/crescimento & desenvolvimento
3.
Toxicol Sci ; 91(1): 192-201, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16500925

RESUMO

Ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, is used as a general pediatric anesthetic. Recent data suggest that anesthetic drugs may cause neurodegeneration during development. The purpose of this study was to determine the robustness of ketamine-induced developmental neurotoxicity using rhesus monkey frontal cortical cultures and also to determine if dysregulation of NMDA receptor subunits promotes ketamine-induced cell death. Frontal cortical cells collected from the neonatal monkey were incubated for 24 h with 1, 10, or 20 microM ketamine alone or with ketamine plus either NR1 antisense oligonucleotides or the nuclear factor kB translocation inhibitor, SN-50. Ketamine caused a marked reduction in the neuronal marker polysialic acid neural cell adhesion molecule and mitochondrial metabolism, as well as an increase in DNA fragmentation and release of lactate dehydrogenase. Ketamine-induced effects were blocked by NR1 antisenses and SN-50. These data suggest that NR1 antisenses and SN-50 offer neuroprotection from the enhanced degeneration induced by ketamine in vitro.


Assuntos
Antagonistas de Aminoácidos Excitatórios/farmacologia , Lobo Frontal/efeitos dos fármacos , Ketamina/farmacologia , Neurônios/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Animais , Animais Recém-Nascidos , Sequência de Bases , Morte Celular/efeitos dos fármacos , Primers do DNA , Feminino , Lobo Frontal/citologia , Lobo Frontal/crescimento & desenvolvimento , Lobo Frontal/metabolismo , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Macaca mulatta , Masculino , NF-kappa B/metabolismo , Neurônios/metabolismo , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA