Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neurotox Res ; 40(4): 1029-1042, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35639248

RESUMO

Despite the fact that the brain is susceptible to neurotoxicity induced by cadmium (Cd), the effects of Cd on the neuroanatomical development in the hypothalamus and regulatory mechanisms of the hypothalamic-pituitary-gonadal (HPG) axis are not fully understood. To clarify this issue, we investigated the effects of 25 mg/kg BW/day cadmium chloride (CdCl2) on neuroanatomical alterations in the hypothalamus of prepubertal female rats. Twenty-four Sprague-Dawley rats were randomly assigned to two groups (n = 12), and CdCl2 was administered via gavage from postnatal days (PND) 21 to PND35. The results of the stereological analysis demonstrated that prepubertal exposure to Cd reduced the number of neurons and oligodendrocytes in the arcuate (ARC) and dorsomedial hypothalamus nucleus (DMH) nuclei. In contrast, Cd exposure increased the number of microglial cells in the ARC and DMH nuclei. Cd exposure decreased the mRNA levels of gonadotropin-releasing hormone (GnRH) and increased the mRNA levels of RFamide-related peptide (RFRP-3), but not kisspeptin (Kiss1) in the hypothalamus. Moreover, hormonal assay showed that Cd exposure caused a reduction in the concentration of gonadotropins: luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in serum. Immunohistochemical expression of RFRP-3 in neuronal cell bodies demonstrated that the mean number of RFRP-3 expressing neurons in the DMH nucleus of cadmium-treated rats was dramatically higher than the vehicle group. Overall, exposure to Cd during the prepubertal period alters the population of neurons and glial cell types in the hypothalamus. Additionally, Cd exposure disrupts the regulatory mechanisms of the HPG axis.


Assuntos
Cádmio , Hipotálamo , Neuroglia , Animais , Feminino , Ratos , Cádmio/toxicidade , Hipotálamo/metabolismo , Ratos Sprague-Dawley , RNA Mensageiro/metabolismo
2.
Chem Biol Interact ; 337: 109379, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33453195

RESUMO

Cadmium (Cd) is a toxic metal, which seems to be crucial during the prepubertal period. Cd can destroy the structural integrity of the blood-brain barrier (BBB) and enters into the brain. Although the brain is susceptible to neurotoxicity induced by Cd, the effects of Cd on the brain, particularly hypothalamic transcriptome, are still relatively poorly understood. Therefore, we investigated the molecular effects of Cd exposure on the hypothalamus by profiling the transcriptomic response of the hypothalamus to high dose of Cd (25 mg/kg bw/day cadmium chloride (CdCl2)) during the prepubertal period in Sprague-Dawley female rats. After sequencing and annotation, differential expression analysis revealed 1656 genes that were differentially expressed that 108 of them were classified into 37 transcription factor (TF) families. According to gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, these differentially expressed genes (DEGs) were involved in different biological processes and neurological disorders including Alzheimer's disease (AD), Huntington's disease (HD), and Parkinson's disease (PD), prolactin signaling pathway, PI3K/Akt signaling, and dopaminergic synapse. Five transcripts were selected for further analyses with Real-time quantitative PCR (RT-qPCR). The RT-qPCR results were mostly consistent with those from the high throughput RNA sequencing (RNA-seq). Cresyl violet staining clearly showed an increased neuronal degeneration in the dorsomedial hypothalamus (DMH) and arcuate (Arc) nuclei of the CdCl2 group. Overall, this study demonstrates that prepubertal exposure to high doses of Cd induces hypothalamic injury through transcriptome profiling alteration in female rats, which reveals the new mechanisms of pathogenesis of Cd in the hypothalamus.


Assuntos
Cloreto de Cádmio/toxicidade , Hipotálamo/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Animais , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/metabolismo , Núcleo Arqueado do Hipotálamo/patologia , Glicemia/análise , Regulação para Baixo/efeitos dos fármacos , Feminino , Ontologia Genética , Redes Reguladoras de Genes/efeitos dos fármacos , Hipotálamo/metabolismo , Hipotálamo/patologia , Sistema Imunitário/efeitos dos fármacos , Sistema Imunitário/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Prolactina/sangue , Ratos , Ratos Sprague-Dawley , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima/efeitos dos fármacos
3.
J Chem Neuroanat ; 92: 71-82, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30008384

RESUMO

Reproductive function is regulated by the hypothalamic-pituitary-gonads (HPG) axis. Hypothalamic neurons synthesizing kisspeptin play a fundamental role in the central regulation of the timing of puberty onset and reproduction in mammals. Kisspeptin is a regulator of gonadotropin releasing hormone (GnRH) and luteinizing hormone (LH). In female rodent, the kisspeptin (encoded by kiss1 gene), neurokinin B (Tac3) and dynorphin neurons form the basis for the "KNDy neurons" in the arcuate nucleus and play a fundamental role in the regulation of GnRH/LH release. Furthermore, various factors including neurotransmitters and neuropeptides may cooperate with kisspeptin signaling to modulate GnRH function. Many neuropeptides including proopiomelanocortin, neuropeptide Y, agouti-related protein, and other neuropeptides, as well as neurotransmitters, dopamine, norepinephrine and γ-aminobutyric acid are suggested to control feeding and HPG axis, the underlying mechanisms are not well known. Nonetheless, to date, information about the neurochemical factors of kisspeptin neurons remains incomplete in rodent. This review is intended to provide an overview of KNDy neurons; major neuropeptides and neurotransmitters interfere in kisspeptin signaling to modulate GnRH function for regulation of puberty onset and reproduction, with a focus on the female rodent.


Assuntos
Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Neurônios/metabolismo , Receptores de Kisspeptina-1/metabolismo , Reprodução/fisiologia , Transdução de Sinais/fisiologia , Animais , Dinorfinas/metabolismo , Feminino , Neurocinina B/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA