Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Asian Pac J Cancer Prev ; 21(10): 3011-3018, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33112561

RESUMO

OBJECTIVES: It is noteworthy that several animal species are known to withstand high levels of radiation, and are exposed to heavy metals but rarely been reported to develop cancer. For example, the scorpion has been used as folk medicine in ancient civilizations of Iran and China, while amphibian skin is known to possess medicinal properties. Here, we elucidated the anti-tumour activity of the scorpion (Uropygi) and frog (Lithobates catesbeianus). MATERIALS AND METHODS: Animals were procured and their organ lysates and sera were prepared and tested against Michigan Cancer Foundation-7 breast cancer (MCF-7), prostate cancer (PC3), Henrietta Lacks cervical cancer (HeLa), and normal human keratinocyte cells. Exoskeleton, appendages and hepatopancreas were dissected from the scorpion, whereas liver, lungs, heart, oviduct, gastrointestinal tract, gall bladder, kidneys, eggs and sera were collected from frog and organ lysates/sera were prepared. Growth inhibition assays and cytotoxicity assays were performed. RESULTS: Appendages, exoskeleton lysates, and hepatopancreas from scorpion exhibited potent growth inhibition, and cytotoxic effects. Furthermore, lungs, liver, gastrointestinal tract, heart, oviduct, kidneys, eggs, and sera from frog displayed growth inhibition and cytotoxic effects. CONCLUSION: Organ lysates, sera of scorpion, and amphibians possess anti-tumour activities. This is a worthy area of research as the molecular identity of the active molecule(s) together with their mechanism of action will lead to the rational development of novel anticancer agent(s).


Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Escorpiões/química , Extratos de Tecidos/farmacologia , Animais , Anuros , Apoptose , Proliferação de Células , Humanos , Neoplasias/patologia , Células Tumorais Cultivadas
2.
Sci Rep ; 9(1): 17012, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31740685

RESUMO

Antimicrobial resistance is a major threat to human health, hence there is an urgent need to discover antibacterial molecule(s). Previously, we hypothesized that microbial gut flora of animals are a potential source of antibacterial molecules. Among various animals, Cuora amboinensis (turtle) represents an important reptile species living in diverse ecological environments and feed on organic waste and terrestrial organisms and have been used in folk medicine. The purpose of this study was to mine turtle's gut bacteria for potential antibacterial molecule(s). Several bacteria were isolated from the turtle gut and their conditioned media were prepared. Conditioned media showed potent antibacterial activity against several Gram-positive (Bacillus cereus, Streptococcus pyogenes and methicillin-resistant Staphylococcus aureus) and Gram-negative (neuropathogenic Escherichia coli K1, Serratia marcescens, Pseudomonas aeruginosa, Salmonella enterica and Klebsiella pneumoniae) pathogenic bacteria. Conditioned media-mediated bactericidal activity was heat-resistant when treated at 95°C for 10 min. By measuring Lactate dehydrogenase release, the results showed that conditioned media had no effect on human cell viability. Tandem Mass Spectrometric analysis revealed the presence of various secondary metabolites, i.e., a series of known as well as novel N-acyl-homoserine lactones, several homologues of 4-hydroxy-2-alkylquinolines, and rhamnolipids, which are the signature metabolites of Pseudomonas species. These findings are significant and provide the basis for rational development of therapeutic interventions against bacterial infections.


Assuntos
Antibacterianos/farmacologia , Infecções Bacterianas/prevenção & controle , Microbioma Gastrointestinal , Tartarugas/microbiologia , Animais , Antibacterianos/metabolismo , Infecções Bacterianas/microbiologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/fisiologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/fisiologia , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Salmonella enterica/efeitos dos fármacos , Salmonella enterica/fisiologia , Serratia marcescens/efeitos dos fármacos , Serratia marcescens/fisiologia , Streptococcus pyogenes/efeitos dos fármacos , Streptococcus pyogenes/fisiologia
3.
AMB Express ; 9(1): 95, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31254123

RESUMO

The discovery of novel antimicrobials from animal species under pollution is an area untapped. Chinese red-headed centipede is one of the hardiest arthropod species commonly known for its therapeutic value in traditional Chinese medicine. Here we determined the antibacterial activity of haemolymph and tissue extracts of red-headed centipede, Scolopendra subspinipes against a panel of Gram-positive and Gram-negative bacteria. Lysates exhibited potent antibacterial activities against a broad range of bacteria tested. Chemical characterization of biologically active molecules was determined via liquid chromatography mass spectrometric analysis. From crude haemolymph extract, 12 compounds were identified including: (1) L-Homotyrosine, (2) 8-Acetoxy-4-acoren-3-one, (3) N-Undecylbenzenesulfonic acid, (4) 2-Dodecylbenzenesulfonic acid, (5) 3H-1,2-Dithiole-3-thione, (6) Acetylenedicarboxylate, (7) Albuterol, (8) Tetradecylamine, (9) Curcumenol, (10) 3-Butylidene-7-hydroxyphthalide, (11) Oleoyl Ethanolamide and (12) Docosanedioic acid. Antimicrobial activities of the identified compounds were reported against Gram-positive and Gram-negative bacteria, fungi, viruses and parasites, that possibly explain centipede's survival in harsh and polluted environments. Further research in characterization, molecular mechanism of action and in vivo testing of active molecules is needed for the development of novel antibacterials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA