Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
JCI Insight ; 6(11)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33974562

RESUMO

The hypothalamus is a critical regulator of glucose metabolism and is capable of correcting diabetes conditions independently of an effect on energy balance. The small GTPase Rap1 in the forebrain is implicated in high-fat diet-induced (HFD-induced) obesity and glucose imbalance. Here, we report that increasing Rap1 activity selectively in the medial hypothalamus elevated blood glucose without increasing the body weight of HFD-fed mice. In contrast, decreasing hypothalamic Rap1 activity protected mice from diet-induced hyperglycemia but did not prevent weight gain. The remarkable glycemic effect of Rap1 was reproduced when Rap1 was specifically deleted in steroidogenic factor-1-positive (SF-1-positive) neurons in the ventromedial hypothalamic nucleus (VMH) known to regulate glucose metabolism. While having no effect on body weight regardless of sex, diet, and age, Rap1 deficiency in the VMH SF1 neurons markedly lowered blood glucose and insulin levels, improved glucose and insulin tolerance, and protected mice against HFD-induced neural leptin resistance and peripheral insulin resistance at the cellular and whole-body levels. Last, acute pharmacological inhibition of brain exchange protein directly activated by cAMP 2, a direct activator of Rap1, corrected glucose imbalance in obese mouse models. Our findings uncover the primary role of VMH Rap1 in glycemic control and implicate Rap1 signaling as a potential target for therapeutic intervention in diabetes.


Assuntos
Glicemia/metabolismo , Hiperglicemia/metabolismo , Insulina/metabolismo , Neurônios/metabolismo , Obesidade/metabolismo , Núcleo Hipotalâmico Ventromedial/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo , Animais , Dieta Hiperlipídica , Técnicas de Silenciamento de Genes , Homeostase , Hipotálamo/metabolismo , Resistência à Insulina , Leptina/metabolismo , Camundongos , Fator Esteroidogênico 1/metabolismo , Proteínas rap1 de Ligação ao GTP/genética
2.
Nat Med ; 23(12): 1444-1453, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29106398

RESUMO

Asprosin is a recently discovered fasting-induced hormone that promotes hepatic glucose production. Here we demonstrate that asprosin in the circulation crosses the blood-brain barrier and directly activates orexigenic AgRP+ neurons via a cAMP-dependent pathway. This signaling results in inhibition of downstream anorexigenic proopiomelanocortin (POMC)-positive neurons in a GABA-dependent manner, which then leads to appetite stimulation and a drive to accumulate adiposity and body weight. In humans, a genetic deficiency in asprosin causes a syndrome characterized by low appetite and extreme leanness; this is phenocopied by mice carrying similar mutations and can be fully rescued by asprosin. Furthermore, we found that obese humans and mice had pathologically elevated concentrations of circulating asprosin, and neutralization of asprosin in the blood with a monoclonal antibody reduced appetite and body weight in obese mice, in addition to improving their glycemic profile. Thus, in addition to performing a glucogenic function, asprosin is a centrally acting orexigenic hormone that is a potential therapeutic target in the treatment of both obesity and diabetes.


Assuntos
Regulação do Apetite/genética , Hipotálamo/metabolismo , Proteínas dos Microfilamentos/fisiologia , Fragmentos de Peptídeos/fisiologia , Hormônios Peptídicos/fisiologia , Adolescente , Adulto , Animais , Depressores do Apetite/metabolismo , Feminino , Fibrilina-1 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/genética , Neurônios/metabolismo , Fragmentos de Peptídeos/genética , Hormônios Peptídicos/genética , Ratos , Transdução de Sinais , Adulto Jovem
3.
J Biol Chem ; 279(34): 35150-8, 2004 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-15197189

RESUMO

Targeted disruption of the lipid droplet protein, perilipin, in mice leads to constitutional lipolysis associated with marked reduction in white adipose tissue as a result of unbridled lipolysis. To investigate the metabolic adaptations in response to the constitutive lipolysis, we studied perilipin-null (plin(-/-)) mice in terms of their fatty acid oxidation and glycerol and glucose metabolism homeostasis by using dynamic biochemical testing and clamp and tracer infusion methods. plin(-/-) mice showed increased beta-oxidation in muscle, liver, and adipose tissue resulting from a coordinated regulation of the enzymes and proteins involved in beta-oxidation. The increased beta-oxidation helped remove the extra free fatty acids created by the constitutive lipolysis. An increase in the expression of the transcripts for uncoupling proteins-2 and -3 also accompanied this increase in fatty acid oxidation. Adult plin(-/-) mice had normal plasma glucose but a reduced basal hepatic glucose production (46% that of plin(+/+)). Insulin infusion during low dose hyperinsulinemic-euglycemic clamp further lowered the glucose production in plin(-/-) mice, but plin(-/-) mice also showed a 36% decrease (p < 0.007) in glucose disposal rate during the low dose insulin clamp, indicating peripheral insulin resistance. However, compared with plin(+/+) mice, 14-week-old plin(-/-) mice showed no significant difference in glucose disposal rate during the high dose hyperinsulinemic clamp, whereas 42-week-old plin(-/-) mice displayed significant insulin resistance on high dose hyperinsulinemic clamp. Despite increasing insulin resistance with age, plin(-/-) mice at different ages maintained a normal glucose response during an intraperitoneal glucose tolerance curve, being compensated by the increased beta-oxidation and reduced hepatic glucose production. These experiments uncover the metabolic adaptations associated with the constitutional lipolysis in plin(-/-) mice that allowed the mice to continue to exhibit normal glucose tolerance in the presence of peripheral insulin resistance.


Assuntos
Glucose/biossíntese , Resistência à Insulina , Lipólise , Fígado/metabolismo , Músculo Esquelético/metabolismo , Fosfoproteínas/deficiência , Adaptação Fisiológica/genética , Animais , Proteínas de Transporte , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica , Glucose/genética , Teste de Tolerância a Glucose , Resistência à Insulina/genética , Lipólise/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução , Perilipina-1 , Fosfoproteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA