Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
2.
Biomed Pharmacother ; 169: 115881, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37989030

RESUMO

Diabetic retinopathy (DR) is a form of retinal microangiopathy that occurs as a result of long-term Diabetes mellitus (DM). Patients with Diabetes mellitus typically suffer from DR as a progression of the disease that may be due to initiation and dysregulation of pathways like the polyol, hexosamine, the AGE/RAGE, and the PKC pathway, which all have negative impacts on eye health and vision. In this review, various databases, including PubMed, Google Scholar, Web of Science, and Science Direct, were scoured for data relevant to the aforementioned title. The three most common therapies for DR today are retinal photocoagulation, anti-vascular endothelial growth factor (VEGF) therapy, and vitrectomy, however, there are a number of drawbacks and limits to these methods. So, it is of critical importance and profound interest to discover treatments that may successfully address the pathogenesis of DR. Curcumin and ß-glucogallin are the two potent compounds of natural origin that are already being used in various nutraceutical formulations for several ailments. They have been shown potent antiapoptotic, anti-inflammatory, antioxidant, anticancer, and pro-vascular function benefits in animal experiments. Their parent plant species have been used for generations by practitioners of traditional herbal medicine for the treatment and prevention of various eye ailments. In this review, we will discuss about pathophysiology of Diabetic retinopathy and the therapeutic potentials of curcumin and ß-glucogallin one of the principal compounds from Curcuma longa and Emblica officinalis in Diabetic retinopathy.


Assuntos
Curcumina , Diabetes Mellitus , Retinopatia Diabética , Animais , Humanos , Retinopatia Diabética/metabolismo , Curcumina/farmacologia , Curcumina/uso terapêutico , Curcumina/metabolismo , Retina/patologia , Taninos Hidrolisáveis/uso terapêutico , Diabetes Mellitus/metabolismo
3.
Ann Med Surg (Lond) ; 85(10): 4954-4963, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37811101

RESUMO

Objective: This review aims to explore the impact of the COVID-19 pandemic on mental health, with a focus on the physiological and psychological consequences, including comorbidities. The goal is to understand the direct and indirect populations affected by mental distress and identify potential interventions. Methodology: A comprehensive literature search was conducted using various databases, including Google Scholar, ResearchGate, ScienceDirect, PubMed, PLoS One, and Web of Science. The search utilized relevant keywords to investigate the direct and indirect impacts of COVID-19 on mental health. The selected articles were critically evaluated and analyzed to identify key findings and insights. Main findings: Mental health, being an intrinsic component of overall well-being, plays a vital role in physiological functioning. The COVID-19 pandemic, caused by the emergence of the novel SARS-CoV-2 virus, has had a devastating global impact. Beyond the respiratory symptoms, individuals recovering from COVID-19 commonly experience additional ailments, such as arrhythmia, depression, anxiety, and fatigue. Healthcare professionals on the frontlines face an elevated risk of mental illness. However, it is crucial to recognize that the general population also grapples with comparable levels of mental distress. Conclusion: The COVID-19 pandemic has underscored the significance of addressing mental health concerns. Various strategies can help mitigate the impact, including counselling, fostering open lines of communication, providing mental support, ensuring comprehensive patient care, and administering appropriate medications. In severe cases, treatment may involve the supplementation of essential vitamins and antidepressant therapy. By understanding the direct and indirect impacts of COVID-19 on mental health, healthcare providers and policymakers can develop targeted interventions to support individuals and communities affected by the pandemic. Continued research and collaborative efforts are essential to address this pervasive issue effectively.

4.
Cell Reprogram ; 14(2): 146-54, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22372577

RESUMO

This study investigated the effects of serum-starvation, total confluence, and roscovitine treatment on cell-cycle synchronization of buffalo ear skin fibroblasts to the G0/G1 stage and on the developmental competence of cloned embryos. Serum starvation of total confluence cultures for 24 h had a higher (p<0.05) proportion of cells at G0/G1 stage (94.4%) compared with serum starved cyclic and nonstarved confluent cultures (76.8 and 86.0%, respectively), whereas differences between cyclic cells with or without serum starvation were not significant. The proportion of cells at G0/G1 was higher (p<0.05) with 20 and 30 µM roscovitine treatment than that with 10 µM (94.4, 96.4, and 86.6%, respectively), which was similar to that for total confluence (86.0%). MTT assay showed that cell viability decreased as dose of roscovitine increased. The blastocyst rate was significantly higher (p<0.05) when nuclear transfer embryos were reconstructed using donors cells from total confluence, confluence serum starved, and roscovitine-treated (20 and 30 µM) groups (48.8, 48.9, 57.9, and 62.9%, respectively) compared to nontreated cyclic cells (20.2%). However, the cleavage rate and total cell number of cloned embryos were similar for all the groups. The number of ICM cells was improved by 30 µM roscovitine treatment (45.25 ± 2.34). The cryosurvival rate of blastocysts derived from cells synchronized with 20 or 30 µM roscovitine was higher compared to that for total confluence group (33.6, 37.8 vs. 23.8%). In conclusion, treatment with 30 µM roscovitine is optimal for harvesting G0/G1 stage cells for producing high quality cloned buffalo embryos, and that it is better than serum-starvation or total confluence for cell synchronization.


Assuntos
Búfalos , Ciclo Celular/efeitos dos fármacos , Embrião de Mamíferos/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Purinas/farmacologia , Animais , Búfalos/embriologia , Búfalos/genética , Búfalos/metabolismo , Búfalos/fisiologia , Ciclo Celular/fisiologia , Clonagem de Organismos/métodos , Período de Replicação do DNA/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Fibroblastos/citologia , Fibroblastos/fisiologia , Fase G1/efeitos dos fármacos , Fase G1/fisiologia , Modelos Biológicos , Técnicas de Transferência Nuclear , Inibidores de Proteínas Quinases/farmacologia , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Fase de Repouso do Ciclo Celular/fisiologia , Roscovitina , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA