Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 86(20)2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32801181

RESUMO

Enterococcus faecalis is a Gram-positive bacterium that normally exists as an intestinal commensal in humans but is also a leading cause of nosocomial infections. Previous work noted that growth supplementation with serum induced tolerance to membrane-damaging agents, including the antibiotic daptomycin. Specific fatty acids found within serum could independently provide tolerance to daptomycin (protective fatty acids), yet some fatty acids found in serum did not and had negative effects on enterococcal physiology (nonprotective fatty acids). Here, we measured a wide array of physiological responses after supplementation with combinations of protective and nonprotective fatty acids to better understand how serum induces daptomycin tolerance. When cells were supplemented with either nonprotective fatty acid, palmitic acid, or stearic acid, there were marked defects in growth and morphology, but these defects were rescued upon supplementation with either protective fatty acid, oleic acid, or linoleic acid. Membrane fluidity decreased with growth in either palmitic or stearic acid alone but returned to basal levels when a protective fatty acid was supplied. Daptomycin tolerance could be induced if a protective fatty acid was provided with a nonprotective fatty acid, and some specific combinations protected as well as serum supplementation. While cell envelope charge has been associated with tolerance to daptomycin in other Gram-positive bacteria, we concluded that it does not correlate with the fatty acid-induced protection we observed. Based on these observations, we conclude that daptomycin tolerance by serum is driven by specific, protective fatty acids found within the fluid.IMPORTANCE With an increasing prevalence of antibiotic resistance in the clinic, we strive to understand more about microbial defensive mechanisms. A nongenetic tolerance to the antibiotic daptomycin was discovered in Enterococcus faecalis that results in the increased survival of bacterial populations after treatment with the drug. This tolerance mechanism likely synergizes with antibiotic resistance in the clinic. Given that this tolerance phenotype is induced by incorporation of fatty acids present in the host, it can be assumed that infections by this organism require a higher dose of antibiotic for successful eradication. The mixture of fatty acids in human fluids is quite diverse, with little understanding between the interplay of fatty acid combinations and the tolerance phenotype we observe. It is crucial to understand the effects of fatty acid combinations on E. faecalis physiology if we are to suppress the tolerance physiology in the clinic.


Assuntos
Antibacterianos/farmacologia , Daptomicina/farmacologia , Farmacorresistência Bacteriana , Enterococcus faecalis/fisiologia , Ácido Linoleico/metabolismo , Ácido Oleico/metabolismo , Membrana Celular/fisiologia , Enterococcus faecalis/efeitos dos fármacos
2.
Appl Environ Microbiol ; 84(1)2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29079613

RESUMO

Enterococcus faecalis is a commensal of the human gastrointestinal tract that can persist in the external environment and is a leading cause of hospital-acquired infections. Given its diverse habitats, the organism has developed numerous strategies to survive a multitude of environmental conditions. Previous studies have demonstrated that E. faecalis will incorporate fatty acids from bile and serum into its membrane, resulting in an induced tolerance to membrane-damaging agents. To discern whether all fatty acids induce membrane stress protection, we examined how E. faecalis responded to individually supplied fatty acids. E. faecalis readily incorporated fatty acids 14 to 18 carbons in length into its membrane but poorly incorporated fatty acids shorter or longer than this length. Supplementation with saturated fatty acids tended to increase generation time and lead to altered cellular morphology in most cases. Further, exogenously supplied saturated fatty acids did not induce tolerance to the membrane-damaging antibiotic daptomycin. Supplementation with unsaturated fatty acids produced variable growth effects, with some impacting generation time and morphology. Exogenously supplied unsaturated fatty acids that are normally produced by E. faecalis and those that are found in bile or serum could restore growth in the presence of a fatty acid biosynthetic inhibitor. However, only the eukaryote-derived fatty acids oleic acid and linoleic acid provided protection from daptomycin. Thus, exogenous fatty acids do not lead to a common physiological effect on E. faecalis The organism responds uniquely to each, and only host-derived fatty acids induce membrane protection.IMPORTANCEEnterococcus faecalis is a commonly acquired hospital infectious agent with resistance to many antibiotics, including those that target its cellular membrane. We previously demonstrated that E. faecalis will incorporate fatty acids found in human fluids, like serum, into its cellular membrane, thereby altering its membrane composition. In turn, the organism is better able to survive membrane-damaging agents, including the antibiotic daptomycin. We examined fatty acids commonly found in serum and those normally produced by E. faecalis to determine which fatty acids can induce protection from membrane damage. Supplementation with individual fatty acids produced a myriad of different effects on cellular growth, morphology, and stress response. However, only host-derived unsaturated fatty acids provided stress protection. Future studies are aimed at understanding how these specific fatty acids induce protection from membrane damage.


Assuntos
Enterococcus faecalis/efeitos dos fármacos , Ácidos Graxos/química , Ácidos Graxos/farmacologia , Enterococcus faecalis/crescimento & desenvolvimento , Enterococcus faecalis/ultraestrutura , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/farmacologia , Microscopia Eletrônica de Varredura
3.
Appl Environ Microbiol ; 80(20): 6527-38, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25128342

RESUMO

Enterococcus faecalis is a commensal bacterium of the mammalian intestine that can persist in soil and aquatic systems and can be a nosocomial pathogen to humans. It employs multiple stress adaptation strategies in order to survive such a wide range of environments. Within this study, we sought to elucidate whether membrane fatty acid composition changes are an important component for stress adaptation. We noted that E. faecalis OG1RF was capable of changing its membrane composition depending upon growth phase and temperature. The organism also readily incorporated fatty acids from bile, serum, and medium supplemented with individual fatty acids, often dramatically changing the membrane composition such that a single fatty acid was predominant. Growth in either low levels of bile or specific individual fatty acids was found to protect the organism from membrane challenges such as high bile exposure. In particular, we observed that when grown in low levels of bile, serum, or the host-derived fatty acids oleic acid and linoleic acid, E. faecalis was better able to survive the antibiotic daptomycin. Interestingly, the degree of membrane saturation did not appear to be important for protection from the stressors examined here; instead, it appears that a specific fatty acid or combination of fatty acids is critical for stress resistance.


Assuntos
Membrana Celular/química , Enterococcus faecalis/química , Enterococcus faecalis/fisiologia , Ácidos Graxos/farmacocinética , Adaptação Biológica , Antibacterianos/farmacologia , Bile , Ácidos e Sais Biliares/farmacologia , Membrana Celular/metabolismo , Daptomicina/farmacologia , Farmacorresistência Bacteriana , Enterococcus faecalis/efeitos dos fármacos , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Ácido Linoleico/farmacologia , Ácido Oleico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA