Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Nutrients ; 14(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35458238

RESUMO

Epidemiological studies have suggested that coffee consumption is associated with a decrease in the risk of developing obesity and diabetes; however, the detailed mechanisms underlying these effects of coffee consumption remain poorly understood. In this study, we examined the effects of chlorogenic acid on energy metabolism in vitro. Hepatocellular carcinoma G2 (HepG2) cells were cultured in a medium containing chlorogenic acid. Chlorogenic acid increased the activity of mitochondrial enzymes, including citrate synthase, isocitrate dehydrogenase, and malate dehydrogenase (MDH), which are involved in the tricarboxylic acid (TCA) cycle. Proteome analysis using the isobaric tags for the relative and absolute quantitation (iTRAQ) method revealed the upregulation of proteins involved in the glycolytic system, electron transport system, and ATP synthesis in mitochondria. Therefore, we propose a notable mechanism whereby chlorogenic acid enhances energy metabolism, including the TCA cycle, glycolytic system, electron transport, and ATP synthesis. This mechanism provides important insights into understanding the beneficial effects of coffee consumption.


Assuntos
Ácido Clorogênico , Proteômica , Trifosfato de Adenosina/metabolismo , Ácido Clorogênico/farmacologia , Café , Metabolismo Energético , Células Hep G2 , Humanos , Proteômica/métodos
2.
Mol Metab ; 55: 101401, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34823066

RESUMO

OBJECTIVE: The paraventricular nucleus of hypothalamus (PVN), an integrative center in the brain, orchestrates a wide range of physiological and behavioral responses. While the PVN melanocortin 4 receptor (MC4R) signaling (PVNMC4R+) is involved in feeding regulation, the neuroanatomical organization of PVNMC4R+ connectivity and its role in other physiological regulations are incompletely understood. Here we aimed to better characterize the input-output organization of PVNMC4R+ neurons and test their physiological functions beyond feeding. METHODS: Using a combination of viral tools, we mapped PVNMC4R+ circuits and tested the effects of chemogenetic activation of PVNMC4R+ neurons on thermoregulation, cardiovascular control, and other behavioral responses beyond feeding. RESULTS: We found that PVNMC4R+ neurons innervate many different brain regions that are known to be important not only for feeding but also for neuroendocrine and autonomic control of thermoregulation and cardiovascular function, including but not limited to the preoptic area, median eminence, parabrachial nucleus, pre-locus coeruleus, nucleus of solitary tract, ventrolateral medulla, and thoracic spinal cord. Contrary to these broad efferent projections, PVNMC4R+ neurons receive monosynaptic inputs mainly from other hypothalamic nuclei (preoptic area, arcuate and dorsomedial hypothalamic nuclei, supraoptic nucleus, and premammillary nucleus), the circumventricular organs (subfornical organ and vascular organ of lamina terminalis), the bed nucleus of stria terminalis, and the parabrachial nucleus. Consistent with their broad efferent projections, chemogenetic activation of PVNMC4R+ neurons not only suppressed feeding but also led to an apparent increase in heart rate, blood pressure, and brown adipose tissue temperature. These physiological changes accompanied acute transient hyperactivity followed by hypoactivity and resting-like behavior. CONCLUSIONS: Our results elucidate the neuroanatomical organization of PVNMC4R+ circuits and shed new light on the roles of PVNMC4R+ pathways in autonomic control of thermoregulation, cardiovascular function, and biphasic behavioral activation.


Assuntos
Núcleo Hipotalâmico Paraventricular/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Animais , Regulação da Temperatura Corporal/fisiologia , Encéfalo/metabolismo , Núcleo Hipotalâmico Dorsomedial/metabolismo , Técnicas de Introdução de Genes/métodos , Hipotálamo/metabolismo , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Receptor Tipo 4 de Melanocortina/fisiologia , Medula Espinal/metabolismo
3.
Nutrients ; 13(11)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34836295

RESUMO

Coriander is a commonly used vegetable, spice, and folk medicine, possessing both nutritional and medicinal properties. Up to two-thirds of patients with rheumatoid arthritis (RA) exhibit loss of body mass, predominately skeletal muscle mass, a process called rheumatoid cachexia, and this has major effects of the quality of life of patients. Owing to a lack of effective treatments, the initial stage of cachexia has been proposed as an important period for prevention and decreasing pathogenesis. In the current study, we found that cachexia-like molecular disorders and muscle weight loss were in progress in gastrocnemius muscle after only 5 days of RA induction in rats, although rheumatoid cachexia symptoms have been reported occurring approximately 45 days after RA induction. Oral administration of coriander slightly restored muscle loss. Moreover, iTRAQ-based quantitative proteomics revealed that coriander treatment could partially restore the molecular derangements induced by RA, including impaired carbon metabolism, deteriorated mitochondrial function (tricarboxylic acid cycle and oxidative phosphorylation), and myofiber-type alterations. Therefore, coriander could be a promising functional food and/or complementary therapy for patients with RA against cachexia.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Caquexia/tratamento farmacológico , Coriandrum/química , Músculo Esquelético/metabolismo , Proteômica , Animais , Peso Corporal , Modelos Animais de Doenças , Ingestão de Alimentos , Humanos , Masculino , Qualidade de Vida , Ratos , Ratos Wistar , Redução de Peso
4.
J Occup Environ Med ; 63(7): e445-e461, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34184662

RESUMO

Competency is defined as possession of sufficient physical, intellectual, and behavioral qualifications to perform a task or serve in a role which adequately accomplishes a desired outcome. Recognizing the need for defining competencies essential to occupational and environmental medicine (OEM) physicians, the American College of Occupational and Environmental Medicine developed its first set of OEM Competencies in 1998. Later updated in 2008, and again in 2014, the increasing globalization and modernization of the workplace, along with published research on OEM practice, required an update to ensure OEM physicians stay current with the field and practice of OEM. Delineation of core competencies for the profession provides employers, government agencies, health care organizations, and other health practitioners a solid context of the role and expertise of OEM physicians.


Assuntos
Medicina Ambiental , Medicina do Trabalho , Humanos , Estados Unidos , Local de Trabalho
5.
J Occup Environ Med ; 63(5): e298-e300, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33928940

RESUMO

Industrial workers can come into contact with harmful agents that are transmitted via the eye in the form of an aerosol droplet or splash. Contact lenses do not provide ocular protection from hazards. This guidance from the American College of Occupational and Environmental Medicine addresses the use of contact lenses and personal protective equipment by the industrial worker and provides recommendations for contact lens use in an eye-hazardous environment.


Assuntos
Lentes de Contato , Medicina do Trabalho , Meio Ambiente , Humanos , Equipamento de Proteção Individual , Estados Unidos
6.
Nutrients ; 12(10)2020 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-33080986

RESUMO

Several genome-wide association studies (GWASs) have reported the association between genetic variants and the habitual consumption of foods and drinks; however, no association data are available regarding the consumption of black tea. The present study aimed to identify genetic variants associated with black tea consumption in 12,258 Japanese participants. Data on black tea consumption were collected by a self-administered questionnaire, and genotype data were obtained from a single nucleotide polymorphism array. In the discovery GWAS, two loci met suggestive significance (p < 1.0 × 10-6). Three genetic variants (rs2074356, rs144504271, and rs12231737) at 12q24 locus were also significantly associated with black tea consumption in the replication stage (p < 0.05) and during the meta-analysis (p < 5.0 × 10-8). The association of rs2074356 with black tea consumption was slightly attenuated by the additional adjustment for alcohol drinking frequency. In conclusion, genetic variants at the 12q24 locus were associated with black tea consumption in Japanese populations, and the association is at least partly mediated by alcohol drinking frequency.


Assuntos
Cromossomos Humanos Par 12/genética , Ingestão de Alimentos/fisiologia , Comportamento Alimentar/fisiologia , Loci Gênicos/genética , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único/genética , Chá , Adulto , Povo Asiático/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Inquéritos e Questionários
7.
Cell Metab ; 31(2): 313-326.e5, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31839488

RESUMO

Glucose is the essential energy source for the brain, whose deficit, triggered by energy deprivation or therapeutic agents, can be fatal. Increased appetite is the key behavioral defense against hypoglycemia; however, the central pathways involved are not well understood. Here, we describe a glucoprivic feeding pathway by tyrosine hydroxylase (TH)-expressing neurons from nucleus of solitary tract (NTS), which project densely to the hypothalamus and elicit feeding through bidirectional adrenergic modulation of agouti-related peptide (AgRP)- and proopiomelanocortin (POMC)-expressing neurons. Acute chemogenetic inhibition of arcuate nucleus (ARC)-projecting NTSTH neurons or their target, AgRP neurons, impaired glucoprivic feeding induced by 2-Deoxy-D-glucose (2DG) injection. Neuroanatomical tracing results suggested that ARC-projecting orexigenic NTSTH neurons are largely distinct from neighboring catecholamine neurons projecting to parabrachial nucleus (PBN) that promotes satiety. Collectively, we describe a circuit organization in which an ascending pathway from brainstem stimulates appetite through key hunger neurons in the hypothalamus in response to hypoglycemia.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Regulação do Apetite , Hipoglicemia/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Núcleo Solitário/metabolismo , Animais , Feminino , Hipotálamo/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Núcleo Solitário/citologia
8.
J Clin Invest ; 129(9): 3786-3791, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31403469

RESUMO

Nutrient excess, a major driver of obesity, diminishes hypothalamic responses to exogenously administered leptin, a critical hormone of energy balance. Here, we aimed to identify a physiological signal that arises from excess caloric intake and negatively controls hypothalamic leptin action. We found that deficiency of the gastric inhibitory polypeptide receptor (Gipr) for the gut-derived incretin hormone GIP protected against diet-induced neural leptin resistance. Furthermore, a centrally administered antibody that neutralizes GIPR had remarkable antiobesity effects in diet-induced obese mice, including reduced body weight and adiposity, and a decreased hypothalamic level of SOCS3, an inhibitor of leptin actions. In contrast, centrally administered GIP diminished hypothalamic sensitivity to leptin and increased hypothalamic levels of Socs3. Finally, we show that GIP increased the active form of the small GTPase Rap1 in the brain and that its activation was required for the central actions of GIP. Altogether, our results identify GIPR/Rap1 signaling in the brain as a molecular pathway linking overnutrition to the control of neural leptin actions.


Assuntos
Hipotálamo/metabolismo , Incretinas/metabolismo , Leptina/metabolismo , Obesidade/metabolismo , Transdução de Sinais , Proteínas rap1 de Ligação ao GTP/metabolismo , Adiposidade/genética , Animais , Incretinas/genética , Leptina/genética , Camundongos , Obesidade/genética , Receptores dos Hormônios Gastrointestinais/genética , Receptores dos Hormônios Gastrointestinais/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Proteínas rap1 de Ligação ao GTP/genética
9.
BMC Genet ; 20(1): 61, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31345160

RESUMO

BACKGROUND: Studies on genetic effects of coffee consumption are scarce for Asian populations. We conducted a genome-wide association study (GWAS) of habitual coffee consumption in Japan using a self-reporting online survey. RESULTS: Candidate genetic loci associated with habitual coffee consumption were searched within a discovery cohort (N = 6,264) and confirmed in a replication cohort (N = 5,975). Two loci achieved genome-wide significance (P < 5 × 10- 8) in a meta-analysis of the discovery and replication cohorts: an Asian population-specific 12q24 (rs79105258; P = 9.5 × 10- 15), which harbors CUX2, and 7p21 (rs10252701; P = 1.0 × 10- 14), in the upstream region of the aryl hydrocarbon receptor (AHR) gene, involved in caffeine metabolism. Subgroup analysis revealed a stronger genetic effect of the 12q24 locus in males (P for interaction = 8.2 × 10- 5). Further, rs79105258 at the 12q24 locus exerted pleiotropic effects on body mass index (P = 3.5 × 10- 4) and serum triglyceride levels (P = 8.7 × 10- 3). CONCLUSIONS: Our results consolidate the association of habitual coffee consumption with the 12q24 and 7p21 loci. The different effects of the 12q24 locus between males and females are a novel finding that improves our understanding of genetic influences on habitual coffee consumption.


Assuntos
Povo Asiático/genética , Cromossomos Humanos Par 12 , Café , Comportamento Alimentar , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Adulto , Feminino , Genótipo , Humanos , Japão , Masculino , Pessoa de Meia-Idade , Fatores Sexuais
10.
Nat Commun ; 10(1): 1718, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30979869

RESUMO

Hypothalamic neurons expressing the anorectic peptide Pro-opiomelanocortin (Pomc) regulate food intake and body weight. Here, we show that Steroid Receptor Coactivator-1 (SRC-1) interacts with a target of leptin receptor activation, phosphorylated STAT3, to potentiate Pomc transcription. Deletion of SRC-1 in Pomc neurons in mice attenuates their depolarization by leptin, decreases Pomc expression and increases food intake leading to high-fat diet-induced obesity. In humans, fifteen rare heterozygous variants in SRC-1 found in severely obese individuals impair leptin-mediated Pomc reporter activity in cells, whilst four variants found in non-obese controls do not. In a knock-in mouse model of a loss of function human variant (SRC-1L1376P), leptin-induced depolarization of Pomc neurons and Pomc expression are significantly reduced, and food intake and body weight are increased. In summary, we demonstrate that SRC-1 modulates the function of hypothalamic Pomc neurons, and suggest that targeting SRC-1 may represent a useful therapeutic strategy for weight loss.


Assuntos
Hipotálamo/metabolismo , Neurônios/metabolismo , Coativador 1 de Receptor Nuclear/genética , Coativador 1 de Receptor Nuclear/metabolismo , Obesidade/genética , Alelos , Animais , Peso Corporal , Linhagem Celular Tumoral , Cruzamentos Genéticos , Deleção de Genes , Técnicas de Introdução de Genes , Variação Genética , Células HEK293 , Heterozigoto , Homeostase , Humanos , Leptina/metabolismo , Masculino , Potenciais da Membrana , Camundongos , Camundongos Transgênicos , Mutação de Sentido Incorreto , Obesidade/metabolismo , Fenótipo
11.
Nat Commun ; 9(1): 1544, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29670083

RESUMO

Sexual dimorphism exists in energy balance, but the underlying mechanisms remain unclear. Here we show that the female mice have more pro-opiomelanocortin (POMC) neurons in the arcuate nucleus of hypothalamus than males, and female POMC neurons display higher neural activities, compared to male counterparts. Strikingly, deletion of the transcription factor, TAp63, in POMC neurons confers "male-like" diet-induced obesity (DIO) in female mice associated with decreased POMC neural activities; but the same deletion does not affect male mice. Our results indicate that TAp63 in female POMC neurons contributes to the enhanced POMC neuron functions and resistance to obesity in females. Thus, TAp63 in POMC neurons is one key molecular driver for the sexual dimorphism in energy homeostasis.


Assuntos
Neurônios/metabolismo , Fosfoproteínas/fisiologia , Pró-Opiomelanocortina/metabolismo , Caracteres Sexuais , Transativadores/fisiologia , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Peso Corporal , Metabolismo Energético/fisiologia , Estrogênios/metabolismo , Feminino , Homeostase , Hipotálamo/metabolismo , Masculino , Camundongos , Obesidade/metabolismo , Receptores para Leptina/metabolismo , Fatores Sexuais
12.
Nutrients ; 9(5)2017 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-28481231

RESUMO

Inflammatory bowel disease (IBD) is induced by multiple environmental factors, and there is still no known treatment capable of curing the disease completely. We propose a zeolite-containing mixture (Hydryeast®, HY)-a multi-component nutraceutical of which the main ingredients are Azumaceramics (mixture of zeolite and oyster shell burned under high temperature), citric acid, red rice yeast (monascus) and calcium stearate-as a nutraceutical intervention in IBD to ameliorate dextran sodium sulfate (DSS)-induced colitis. We show the mechanism through integrated omics using transcriptomics and proteomics. C57BL6 mice were given an AIN-93G basal diet or a 0.8% HY containing diet and sterilized tap water for 11 days. Colitis was then induced by 1.5% (w/v) DSS-containing water for 9 days. HY fed mice showed significantly improved disease activity index and colon length compared to DSS mice. Colonic mucosa microarray analysis plus RT-PCR results indicate HY supplementation may ameliorate inflammation by inhibiting the intestinal inflammatory pathway and suppress apoptosis by curbing the expression of genes like tumor protein 53 and epidermal growth factor receptor and by upregulating epithelial protection-related proteins such as epithelial cell adhesion molecule and tenascin C, thus maintaining mucosal immune homeostasis and epithelial integrity, mirroring the proteome analysis results. HY appears to have a suppressive effect on colitis.


Assuntos
Apoptose/efeitos dos fármacos , Colite/tratamento farmacológico , Sulfato de Dextrana/administração & dosagem , Doenças Inflamatórias Intestinais/prevenção & controle , Mucosa Intestinal/patologia , Zeolitas/administração & dosagem , Animais , Apoptose/genética , Colite/induzido quimicamente , Colo/patologia , Suplementos Nutricionais , Expressão Gênica/efeitos dos fármacos , Mucosa Intestinal/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteômica , Análise Serial de Tecidos , Transcriptoma
13.
Int J Mol Sci ; 18(4)2017 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-28420089

RESUMO

Ghrelin, an orexigenic hormone released primarily from the gut, signals the hypothalamus to stimulate growth hormone release, enhance appetite and promote weight gain. The ghrelin receptor, aka Growth Hormone Secretagogue Receptor (GHS-R), is highly expressed in the brain, with highest expression in Agouti-Related Peptide (AgRP) neurons of the hypothalamus. We recently reported that neuron-specific deletion of GHS-R completely prevents diet-induced obesity (DIO) in mice by activating non-shivering thermogenesis. To further decipher the specific neuronal circuits mediating the metabolic effects of GHS-R, we generated AgRP neuron-specific GHS-R knockout mice (AgRP-Cre;Ghsrf/f). Our data showed that GHS-R in AgRP neurons is required for ghrelin's stimulatory effects on growth hormone secretion, acute food intake and adiposity, but not for long-term total food intake. Importantly, deletion of GHS-R in AgRP neurons attenuated diet-induced obesity (DIO) and enhanced cold-resistance in mice fed high fat diet (HFD). The HFD-fed knockout mice showed increased energy expenditure, and exhibited enhanced thermogenic activation in both brown and subcutaneous fat; this implies that GHS-R suppression in AgRP neurons enhances sympathetic outflow. In summary, our results suggest that AgRP neurons are key site for GHS-R mediated thermogenesis, and demonstrate that GHS-R in AgRP neurons plays crucial roles in governing energy utilization and pathogenesis of DIO.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Neurônios/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Fragmentos de Peptídeos/metabolismo , Receptores de Grelina/genética , Receptores de Grelina/metabolismo , Termogênese , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Metabolismo Energético , Comportamento Alimentar , Deleção de Genes , Hormônio do Crescimento/metabolismo , Homeostase , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Knockout , Modelos Biológicos
14.
Diabetes ; 65(8): 2169-78, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27207529

RESUMO

Ghrelin signaling has major effects on energy and glucose homeostasis, but it is unknown whether ghrelin's functions are centrally and/or peripherally mediated. The ghrelin receptor, growth hormone secretagogue receptor (GHS-R), is highly expressed in the brain and detectable in some peripheral tissues. To understand the roles of neuronal GHS-R, we generated a mouse line where Ghsr gene is deleted in all neurons using synapsin 1 (Syn1)-Cre driver. Our data showed that neuronal Ghsr deletion abolishes ghrelin-induced spontaneous food intake but has no effect on total energy intake. Remarkably, neuronal Ghsr deletion almost completely prevented diet-induced obesity (DIO) and significantly improved insulin sensitivity. The neuronal Ghsr-deleted mice also showed improved metabolic flexibility, indicative of better adaption to different fuels. In addition, gene expression analysis suggested that hypothalamus and/or midbrain might be the sites that mediate the effects of GHS-R in thermogenesis and physical activity, respectively. Collectively, our results indicate that neuronal GHS-R is a crucial regulator of energy metabolism and a key mediator of DIO. Neuronal Ghsr deletion protects against DIO by regulating energy expenditure, not by energy intake. These novel findings suggest that suppressing central ghrelin signaling may serve as a unique antiobesity strategy.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Neurônios/metabolismo , Obesidade/metabolismo , Obesidade/prevenção & controle , Receptores de Grelina/metabolismo , Animais , Encéfalo/metabolismo , Calorimetria Indireta , Ingestão de Alimentos/genética , Ingestão de Alimentos/fisiologia , Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Feminino , Teste de Tolerância a Glucose , Hipotálamo/metabolismo , Resistência à Insulina/genética , Resistência à Insulina/fisiologia , Masculino , Camundongos , Camundongos Mutantes , Obesidade/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Grelina/genética , Sinapsinas/genética , Sinapsinas/metabolismo , Termogênese/genética , Termogênese/fisiologia
15.
Br J Nutr ; 112(5): 709-17, 2014 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-24968200

RESUMO

Jerusalem artichoke (JA) has the potential to attenuate lipid disturbances and insulin resistance (IR), but the underlying mechanisms are not well understood. In the present study, we elucidated the physiological responses and mechanisms of JA intervention with a comprehensive transcriptome analysis. Wistar rats were fed a control diet, a 60 % fructose-enriched diet (FRU), or a FRU with 10 % JA (n 6-7) for 4 weeks. An oral glucose tolerance test was carried out on day 21. Liver samples were collected for biochemical and global gene expression analyses (GeneChip® Rat Genome 230 2.0 Array, Affymetrix). Fructose feeding resulted in IR and hepatic TAG accumulation; dietary JA supplementation significantly improved these changes. Transcriptomic profiling revealed that the expression of malic enzyme 1 (Me1), associated with fatty acid synthesis; decorin (Dcn), related to fibrosis; and cytochrome P450, family 1, subfamily a, polypeptide 2 (Cyp1a2) and nicotinamide phosphoribosyltransferase (Nampt), associated with inflammation, was differentially altered by the FRU, whereas dietary JA supplementation significantly improved the expression of these genes. We established for the first time the molecular mechanisms driving the beneficial effects of JA in the prevention of type 2 diabetes and non-alcoholic fatty liver disease. We propose that 10 % JA supplementation may be beneficial for the prevention of the onset of these diseases.


Assuntos
Diabetes Mellitus Tipo 2/prevenção & controle , Dieta , Fígado Gorduroso/prevenção & controle , Frutose/administração & dosagem , Helianthus , Extratos Vegetais/administração & dosagem , Animais , Citocromo P-450 CYP1A2/genética , Decorina/genética , Ácido Graxo Sintases/metabolismo , Frutanos/administração & dosagem , Expressão Gênica , Perfilação da Expressão Gênica , Teste de Tolerância a Glucose , Resistência à Insulina , Fígado/química , Fígado/patologia , Malato Desidrogenase/genética , Masculino , Nicotinamida Fosforribosiltransferase/genética , Hepatopatia Gordurosa não Alcoólica , Fitoterapia , Raízes de Plantas/química , Ratos , Ratos Wistar , Solubilidade , Triglicerídeos/metabolismo
16.
PLoS One ; 9(3): e91134, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24618914

RESUMO

Many epidemiological studies have indicated that coffee consumption may reduce the risks of developing obesity and diabetes, but the underlying mechanisms of these effects are poorly understood. Our previous study revealed the changes on gene expression profiles in the livers of C57BL/6J mice fed a high-fat diet containing three types of coffee (caffeinated, decaffeinated and green unroasted coffee), using DNA microarrays. The results revealed remarkable alterations in lipid metabolism-related molecules which may be involved in the anti-obesity effects of coffee. We conducted the present study to further elucidate the metabolic alterations underlying the effects of coffee consumption through comprehensive proteomic and metabolomic analyses. Proteomics revealed an up-regulation of isocitrate dehydrogenase (a key enzyme in the TCA cycle) and its related proteins, suggesting increased energy generation. The metabolomics showed an up-regulation of metabolites involved in the urea cycle, with which the transcriptome data were highly consistent, indicating accelerated energy expenditure. The TCA cycle and the urea cycle are likely be accelerated in a concerted manner, since they are directly connected by mutually providing each other's intermediates. The up-regulation of these pathways might result in a metabolic shift causing increased ATP turnover, which is related to the alterations of lipid metabolism. This mechanism may play an important part in the suppressive effects of coffee consumption on obesity, inflammation, and hepatosteatosis. This study newly revealed global metabolic alterations induced by coffee intake, providing significant insights into the association between coffee intake and the prevention of type 2 diabetes, utilizing the benefits of multi-omics analyses.


Assuntos
Café , Comportamento de Ingestão de Líquido , Perfilação da Expressão Gênica , Metabolômica , Proteômica , Animais , Fígado/metabolismo , Masculino , Redes e Vias Metabólicas , Metaboloma , Metabolômica/métodos , Camundongos , Modelos Animais , Proteoma , Ureia/metabolismo
17.
Mol Nutr Food Res ; 57(2): 291-306, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23166034

RESUMO

SCOPE: This study addresses the effects of branched-chain amino acids (BCAA) on global gene expression in liver and skeletal muscle and the molecular mechanisms underlying the improvement in liver cirrhosis using DNA microarray analysis combined with RNase protection assay. METHODS AND RESULTS: Male Wistar rats administered carbon tetrachloride (CCl(4) ) repeatedly for 19 weeks as a decompensated cirrhosis model were thereafter given BCAA-enriched diet (AL) or normal diet (LC) for 5 weeks. The control-diet rats without CCl(4) administration were used as a normal control group. Gene expression in AL was reversed by twofold greater than in LC in the microarray were selected to elucidate the improvements in nutritional and metabolic disorders. Downregulation of fatty acid translocase (FAT)/Cd36, glutamine synthetase, and pyruvate dehydrogenase kinase isoenzyme 4 is believed to promote lower uptake of fatty acids, lower ammonia incorporation, and higher uptake of glucose, and thus to provide an energy source without using BCAA. Ultimately, the catabolism of BCAA and skeletal muscle protein would be slowed, maintaining BCAA concentrations in blood. CONCLUSION: We established, for the first time, the regulatory gene pathways of processes involved in hepatic fibrosis and energy metabolism (hypoalbuminemia, hyperammonemia, and carbohydrate catabolism, and their relationships) under BCAA supplementation.


Assuntos
Aminoácidos de Cadeia Ramificada/administração & dosagem , Tetracloreto de Carbono/efeitos adversos , Suplementos Nutricionais , Hiperamonemia/tratamento farmacológico , Cirrose Hepática/tratamento farmacológico , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Aminoácidos de Cadeia Ramificada/sangue , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Antígenos CD36/genética , Antígenos CD36/metabolismo , Regulação para Baixo , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/metabolismo , Hiperamonemia/induzido quimicamente , Hiperamonemia/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/patologia , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Ratos , Ratos Wistar , Reprodutibilidade dos Testes , Transcriptoma
18.
Genes Cells ; 17(4): 316-25, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22390480

RESUMO

Germ-line stem cells have the potential to be a very powerful tool for modifying the genetic information of individual animals. As a first step to use spermatogonial stem cells (SSCs) to enable genetic modification, we here describe effective long-term culture conditions for propagating zebrafish SSCs and for the production of offspring from these cultured SSCs after their differentiation into sperm in transplanted testicular cell aggregates. Dissociated testicular cells were cultured in specific medium with some modified supplements, including several mammalian growth factors. The spermatogonia actively proliferated and retained the expression of exogenous green fluorescent protein under the control of vas and sox17 promoters and also of promyelocytic leukemia zinc finger (Plzf), a marker of undifferentiated spermatogonia, after 1 month in culture. This is a longer period than the entire natural spermatogenic cycle (from SSCs to sperm). The use of subcutaneously grafted aggregates of these cultured spermatogonia and freshly dissociated testicular cells showed that these SSCs could undergo self-renewal and differentiation into sperm. Artificial insemination of these grafted aggregates successfully produced offspring. This culture method will facilitate the identification of new factors for the maintenance of SSCs and enable the future enrichment of genetically modified SSCs that will produce offspring in zebrafish.


Assuntos
Técnicas de Transferência de Genes , Espermatogônias/citologia , Células-Tronco/citologia , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Técnicas de Cultura de Células/métodos , Feminino , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Espermatogênese , Espermatogônias/metabolismo , Células-Tronco/metabolismo
19.
J Tradit Complement Med ; 1(1): 25-30, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24716102

RESUMO

Transcriptomics, proteomics, and metabolomics are three major platforms of comprehensive omics analysis in the science of food and complementary medicine. Other omics disciplines, including those of epigenetics and microRNA, are matters of increasing concern. The increased use of the omics approach in food science owes much to the recent advancement of technology and bioinformatic methodologies. Moreover, many researchers now put the combination of multiple omics analysis (integrated omics) into practice to exhaustively understand the functionality of food components. However, data analysis of integrated omics requires huge amount of work and high skill of data handling. A database of nutritional omics data was constructed by the authors, which should help food scientists to analyze their own omics data more effectively. In addition, a novel tool for the easy visualization of omics data was developed by the authors' group. The tool enables one to overview the changes of multiple omics in the KEGG pathway. Research in traditional and complementary medicine will be further facilitated by promoting the integrated omics research of food functionality. Such integrated research will only be possible with the effective collaboration of scientists with different backgrounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA