Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurosci Lett ; 722: 134832, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32050100

RESUMO

The terpene lactones of Ginkgo biloba extract, namely ginkgolides (A, B, and C) and bilobalide, possess antioxidant, anti-inflammatory, and neuroprotective effects. They are widely prescribed for the treatment of cerebral dysfunctions and neurological impairments. In addition, they demonstrate antagonistic action at the gamma-aminobutyric acid type A and glycine receptors, which are members of the ligand-gated ion channel superfamily. In the present study, the effects of ginkgolides (A, B, and C) and bilobalide on sleep in C57BL/6 mice were investigated. Ginkgolide B was found to dose-dependently increase the amount of wake and decrease that of non-rapid eye movement sleep without changes in the electroencephalography power density of each sleep/wake stage, core body temperature and locomotor activity for the first 6 h after intraperitoneal injection. Of note, the amount of wake after injection of 5 mg/kg of ginkgolide B showed a significant increase (14.9 %) compared with that of vehicle (P = 0.005). In contrast, there were no significant differences in the amount of sleep, core body temperature, and locomotor activity in the mice injected with ginkgolide A and C. Bilobalide briefly induced a decrease in locomotor activity but did not exert significant effects on the amounts of sleep and wake. The modes of action of the wake-enhancing effects of ginkgolide B are unknown. However, it may act through the antagonism of gamma-aminobutyric acid type A and glycine receptors because it is established that these inhibitory amino acids mediate sleep and sleep-related physiology. It is of interest to further evaluate the stimulant and awaking actions of ginkgolide B on the central nervous system in clinical and basic research studies.


Assuntos
Ginkgo biloba , Ginkgolídeos/administração & dosagem , Lactonas/administração & dosagem , Extratos Vegetais/administração & dosagem , Fases do Sono/efeitos dos fármacos , Vigília/efeitos dos fármacos , Animais , Ciclopentanos/administração & dosagem , Relação Dose-Resposta a Droga , Eletroencefalografia/efeitos dos fármacos , Furanos/administração & dosagem , Injeções Intraperitoneais/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fases do Sono/fisiologia , Vigília/fisiologia
2.
Expert Opin Investig Drugs ; 27(4): 389-406, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29623725

RESUMO

INTRODUCTION: Narcolepsy with cataplexy is most commonly caused by a loss of hypocretin/orexin peptide-producing neurons in the hypothalamus (i.e., Narcolepsy Type 1). Since hypocretin deficiency is assumed to be the main cause of narcoleptic symptoms, hypocretin replacement will be the most essential treatment for narcolepsy. Unfortunately, this option is still not available clinically. There are many potential approaches to replace hypocretin in the brain for narcolepsy such as intranasal administration of hypocretin peptides, developing small molecule hypocretin receptor agonists, hypocretin neuronal transplantation, transforming hypocretin stem cells into hypothalamic neurons, and hypocretin gene therapy. Together with these options, immunotherapy treatments to prevent hypocretin neuronal death should also be developed. AREAS COVERED: In this review, we overview the pathophysiology of narcolepsy and the current and emerging treatments of narcolepsy especially focusing on hypocretin receptor based treatments. EXPERT OPINION: Among hypocretin replacement strategies, developing non-peptide hypocretin receptor agonists is currently the most encouraging since systemic administration of a newly synthesized, selective hypocretin receptor 2 agonist (YNT-185) has been shown to ameliorate symptoms of narcolepsy in murine models. If this option is effective in humans, hypocretin cell transplants or gene therapy technology may become realistic in the future.


Assuntos
Narcolepsia/terapia , Receptores de Orexina/metabolismo , Orexinas/metabolismo , Animais , Encéfalo/fisiopatologia , Cataplexia/fisiopatologia , Cataplexia/terapia , Modelos Animais de Doenças , Desenho de Fármacos , Humanos , Hipotálamo/patologia , Narcolepsia/fisiopatologia , Neurônios/patologia , Receptores de Orexina/agonistas
3.
Neuropharmacology ; 110(Pt A): 268-276, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27474349

RESUMO

Prostaglandin (PG)D2 is an endogenous sleep substance, and a series of animal studies reported that PGD2 or PGD2 receptor (DP1) agonists promote sleep, while DP1 antagonists promote wakefulness. This suggests the possibility of use of PG DP1 antagonists as wake-promoting compounds. We therefore evaluated the wake-promoting effects of ONO-4127Na, a DP1 antagonist, in a mouse model of narcolepsy (i.e., orexin/ataxin-3 transgenic mice) and compared those to effects of modafinil. ONO-4127Na perfused in the basal forebrain (BF) area potently promoted wakefulness in both wild type and narcoleptic mice, and the wake-promoting effects of ONO-4127Na at 2.93 × 10(-4) M roughly corresponded to those of modafinil at 100 mg/kg (p.o.). The wake promoting effects of ONO-4127Na was observed both during light and dark periods, and much larger effects were seen during the light period when mice slept most of the time. ONO-4127Na, when perfused in the hypothalamic area, had no effects on sleep. We further demonstrated that wake-promoting effects of ONO-4127Na were abolished in DP1 KO mice, confirming that the wake-promoting effect of ONO-4127Na is mediated by blockade of the PG DP1 receptors located in the BF area. ONO-4127Na reduced DREM, an EEG/EMG assessment of behavioral cataplexy in narcoleptic mice, suggesting that ONO-4127Na is likely to have anticataplectic effects. DP1 antagonists may be a new class of compounds for the treatment of narcolepsy-cataplexy, and further studies are warranted.


Assuntos
Ataxina-3/deficiência , Narcolepsia/tratamento farmacológico , Orexinas/deficiência , Antagonistas de Prostaglandina/farmacologia , Promotores da Vigília/farmacologia , Animais , Ataxina-3/genética , Compostos Benzidrílicos/farmacologia , Temperatura Corporal/efeitos dos fármacos , Temperatura Corporal/fisiologia , Modelos Animais de Doenças , Eletroencefalografia , Eletromiografia , Hipotálamo/efeitos dos fármacos , Hipotálamo/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modafinila , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Narcolepsia/fisiopatologia , Orexinas/genética , Fotoperíodo , Prosencéfalo/efeitos dos fármacos , Prosencéfalo/fisiopatologia , Receptores Imunológicos/antagonistas & inibidores , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Receptores de Prostaglandina/antagonistas & inibidores , Receptores de Prostaglandina/genética , Receptores de Prostaglandina/metabolismo , Fases do Sono/efeitos dos fármacos , Fases do Sono/fisiologia , Vigília/efeitos dos fármacos , Vigília/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA