Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Elife ; 62017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28809157

RESUMO

Impact of stress on diseases including gastrointestinal failure is well-known, but molecular mechanism is not understood. Here we show underlying molecular mechanism using EAE mice. Under stress conditions, EAE caused severe gastrointestinal failure with high-mortality. Mechanistically, autoreactive-pathogenic CD4+ T cells accumulated at specific vessels of boundary area of third-ventricle, thalamus, and dentate-gyrus to establish brain micro-inflammation via stress-gateway reflex. Importantly, induction of brain micro-inflammation at specific vessels by cytokine injection was sufficient to establish fatal gastrointestinal failure. Resulting micro-inflammation activated new neural pathway including neurons in paraventricular-nucleus, dorsomedial-nucleus-of-hypothalamus, and also vagal neurons to cause fatal gastrointestinal failure. Suppression of the brain micro-inflammation or blockage of these neural pathways inhibited the gastrointestinal failure. These results demonstrate direct link between brain micro-inflammation and fatal gastrointestinal disease via establishment of a new neural pathway under stress. They further suggest that brain micro-inflammation around specific vessels could be switch to activate new neural pathway(s) to regulate organ homeostasis.


Assuntos
Encéfalo/fisiologia , Encefalomielite Autoimune Experimental/complicações , Gastroenteropatias/fisiopatologia , Hipotálamo/patologia , Vias Neurais/fisiologia , Estresse Fisiológico , Animais , Citocinas/metabolismo , Encefalomielite Autoimune Experimental/patologia , Camundongos , Linfócitos T/imunologia
2.
J Biotechnol ; 126(4): 431-9, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16820241

RESUMO

By combining a homologous recombinant gene expression system and optimization of the culture conditions, hyper overproduction of Pleurtous ostreatus MnP2 was achieved. Genetically modified P. ostreatus strains with the recombinant mnp2 sequence under the control of sdi1 expression signals, were subjected to agitated culture using media supplemented with wheat bran or its hot-water extract. The best result, whereby 7300 U/l of MnP was produced by a recombinant strain TM2-18, indicated that more than 30-fold overproduction of the recombinant MnP2 compared to the previous result was achieved. On the other hand, no MnP activity was detected for the wild-type strain under the same conditions. Accumulation of the recombinant, but not endogenous, mnp2 transcripts was demonstrated in reverse-transcription PCR experiments. These results indicated that the recombinant MnP2 was exclusively expressed by the recombinant strain. Purified recombinant MnP2 showed almost identical properties to native MnP2 in electrophoresis, spectroscopic and kinetic analyses, including determination of K(m) and V(max) values for Mn(II), H(2)O(2) and veratryl alcohol. Moreover, the recombinant MnP2 directly oxidized a high-molecularweight substrate RNase A in the absence of redox mediators, as does native MnP2. The homologous overproduction system will provide a plat form for exclusive production of mutant or variant peroxidases with a desired property in basidiomycete.


Assuntos
Peroxidases/biossíntese , Pleurotus/enzimologia , Pleurotus/genética , Organismos Geneticamente Modificados , Peroxidases/genética , Pleurotus/crescimento & desenvolvimento , Engenharia de Proteínas , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA