Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 16830, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34417484

RESUMO

Environmental DNA (eDNA) can be a powerful tool for detecting the distribution and abundance of target species. This study aimed to test the longevity of eDNA in marine sediment through a tank experiment and to use this information to reconstruct past faunal occurrence. In the tank experiment, juvenile jack mackerel (Trachurus japonicus) were kept in flow-through tanks with marine sediment for two weeks. Water and sediment samples from the tanks were collected after the removal of fish. In the field trial, sediment cores were collected in Moune Bay, northeast Japan, where unusual blooms of jellyfish (Aurelia sp.) occurred after a tsunami. The samples were analyzed by layers to detect the eDNA of jellyfish. The tank experiment revealed that after fish were removed, eDNA was not present in the water the next day, or subsequently, whereas eDNA was detectable in the sediment for 12 months. In the sediment core samples, jellyfish eDNA was detected at high concentrations above the layer with the highest content of polycyclic aromatic hydrocarbons, reflecting tsunami-induced oil spills. Thus, marine sediment eDNA preserves a record of target species for at least one year and can be used to reconstruct past faunal occurrence.


Assuntos
DNA Ambiental/genética , Perciformes/genética , Cifozoários/genética , Tsunamis , Animais , Monitoramento Ambiental/métodos , Peixes/genética , Sedimentos Geológicos , Preservação Biológica/métodos
2.
PLoS One ; 15(4): e0231718, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32310994

RESUMO

Water sampling and filtration of environmental DNA (eDNA) analysis have been performed by several different methods, and each method may yield a different species composition or eDNA concentration. Here, we investigated the eDNA of seawater samples directly collected by SCUBA to compare two widely used filtration methods: open filtration with a glass filter (GF/F) and enclosed filtration (Sterivex). We referred to biomass based on visual observation data collected simultaneously to clarify the difference between organism groups. Water samples were collected at two points in the Sea of Japan in May, September and December 2018. The respective samples were filtered through GF/F and Sterivex for eDNA extraction. We quantified the eDNA concentration of five fish and two cnidarian species by quantitative polymerase chain reaction (qPCR) using species-specific primers/probe sets. A strong correlation of eDNA concentration was obtained between GF/F and Sterivex; the intercepts and slopes of the linear regression lines were slightly different in fish and jellyfish. The amount of eDNA detected using the GF/F filtration method was higher than that detected using Sterivex when the eDNA concentration was high; the opposite trend was observed when the eDNA concentration was relatively low. The concentration of eDNA correlated with visually estimated biomass; eDNA concentration per biomass in jellyfish was approximately 700 times greater than that in fish. We conclude that GF/F provides an advantage in collecting a large amount of eDNA, whereas Sterivex offers superior eDNA sensitivity. Both filtration methods are effective in estimating the spatiotemporal biomass size of target marine species.


Assuntos
Cnidários/genética , DNA Ambiental/genética , Filtração/instrumentação , Peixes/genética , Água do Mar/análise , Animais , DNA Ambiental/análise , DNA Ambiental/isolamento & purificação , Desenho de Equipamento , Cifozoários/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA