Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neuroendocrinol ; 35(12): e13351, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37901949

RESUMO

Serotonergic neurons originating from the raphe nuclei have been proposed to regulate corticotropin-releasing factor (CRF) neurons in the paraventricular nucleus of the hypothalamus (PVH). Since glutamate- and γ-aminobutyric acid (GABA)-containing neurons, constituting the hypothalamic local circuits, innervate PVH CRF neurons, we examined whether they mediate the actions of serotonin (5-hydroxytryptamine [5-HT]) on CRF neurons. Spontaneous excitatory postsynaptic currents (sEPSCs) or spontaneous inhibitory postsynaptic currents (sIPSCs) were recorded in PVH CRF neurons, under whole cell patch-clamp, using the CRF-modified yellow fluorescent protein (Venus) ΔNeo mouse. Serotonin elicited an increase in the frequency of sEPSCs in 77% of the cells and a decrease in the frequency of sIPSCs in 71% of the cells, tested in normal medium. Neither the amplitude nor decay time of sEPSC and sIPSC was affected, thus the site(s) of action of serotonin may be presynaptic. In the presence of tetrodotoxin (TTX), serotonin had no significant effects on either parameter of sEPSC or sIPSC, indicating that the effects of serotonin are action potential-dependent, and that the presynaptic interneurons are largely intact within the slice; distant neurons may exist, though, since some 20%-30% of neurons did not respond to serotonin without TTX. We next examined through what receptor subtype(s) serotonin exerts its effects on presynaptic interneurons. DOI (5-HT2A/2C agonist) mimicked the action of serotonin on the sIPSCs, and the serotonin-induced decrease in sIPSC frequency was inhibited by a selective 5-HT2C antagonist RS102221. 8-OH-DPAT (5-HT1A/7 agonist) mimicked the action of serotonin on the sEPSCs, and the serotonin-induced increase in sEPSC frequency was inhibited by a selective 5-HT7 antagonist SB269970. Thus, serotonin showed a dual action on PVH CRF neurons, by upregulating glutamatergic- and downregulating GABAergic interneurons; the former may partly be mediated by 5-HT7 receptors, whereas the latter by 5-HT2C receptors. The CRF-Venus ΔNeo mouse was useful for the electrophysiological examination.


Assuntos
Hormônio Liberador da Corticotropina , Serotonina , Camundongos , Animais , Serotonina/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Transmissão Sináptica/fisiologia , Neurônios/metabolismo , Hipotálamo/metabolismo
2.
Endocrinology ; 164(8)2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37450603

RESUMO

Patients with secondary adrenal insufficiency can present with impaired free water excretion and hyponatremia, which is due to the enhanced secretion of vasopressin (AVP) despite increased total body water. AVP is produced in magnocellular neurons in the paraventricular nucleus of the hypothalamus (PVH) and supraoptic nucleus and in parvocellular corticotropin-releasing factor (CRF) neurons in the PVH. This study aimed to elucidate whether magnocellular AVP neurons or parvocellular CRF neurons coexpressing AVP are responsible for the pathogenesis of hyponatremia in secondary adrenal insufficiency. The number of CRF neurons expressing copeptin, an AVP gene product, was significantly higher in adrenalectomized AVP-floxed mice (AVPfl/fl) than in sham-operated controls. Adrenalectomized AVPfl/fl mice supplemented with aldosterone showed impaired water diuresis under ad libitum access to water or after acute water loading. They became hyponatremic after acute water loading, and it was revealed under such conditions that aquaporin-2 (AQP2) protein levels were increased in the kidney. Furthermore, translocation of AQP2 to the apical membrane was markedly enhanced in renal collecting duct epithelial cells. Remarkably, all these abnormalities observed in the mouse model for secondary adrenal insufficiency were ameliorated in CRF-AVP-/- mice that lacked AVP in CRF neurons. Our study demonstrates that CRF neurons in the PVH are responsible for the pathogenesis of impaired water excretion in secondary adrenal insufficiency.


Assuntos
Insuficiência Adrenal , Hiponatremia , Camundongos , Animais , Hormônio Liberador da Corticotropina/genética , Hormônio Liberador da Corticotropina/metabolismo , Hormônio Adrenocorticotrópico/metabolismo , Hormônios Liberadores de Hormônios Hipofisários/metabolismo , Hiponatremia/metabolismo , Aquaporina 2/genética , Aquaporina 2/metabolismo , Arginina Vasopressina/metabolismo , Hipotálamo/metabolismo , Vasopressinas/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Neurônios/metabolismo , Diurese
3.
Biomolecules ; 12(10)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36291680

RESUMO

Receptor transporter protein 4 (RTP4), one of the receptor chaperone proteins, contributes to the maturation and membrane trafficking of opioid receptor heteromers consisting of mu (MOPr) and delta (DOPr) opioid receptors (MOPr-DOPr). Although MOPr-DOPr is known to mediate the development of morphine tolerance, the extent to which RTP4 plays a role in this process has not been elucidated. Given that RTP4 can be upregulated by repeated administration of morphine, especially in the hypothalamus, here we investigated the effect of hypothalamus-selective ablation of RTP4 on the development of antinociceptive tolerance to morphine. In this study, we generated RTP4flox mice and selectively knocked-out RTP4 using local injection of adeno-associated virus expressing Cre recombinase (AAV-Cre) into the hypothalamus. The AAV-Cre injection partially, but significantly, decreased the level of RTP4 expression, and suppressed the development of antinociceptive tolerance to morphine. Next, we examined the mechanism of regulation of RTP4 and found that, in neuronal cells, Rtp4 induction is via Gi and MAPK activation, while, in microglial cells, the induction is via Toll-like receptor 4. Together, these studies highlight the role of MOR activity in regulating RTP4, which, in turn, plays an important role in modulating morphine effects in vivo.


Assuntos
Morfina , Receptor 4 Toll-Like , Camundongos , Animais , Morfina/farmacologia , Receptor 4 Toll-Like/metabolismo , Receptores Opioides mu/metabolismo , Analgésicos Opioides/farmacologia , Receptores Opioides/metabolismo , Hipotálamo/metabolismo , Chaperonas Moleculares/metabolismo
4.
J Neurosci ; 41(20): 4524-4535, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33846232

RESUMO

Ca2+-dependent activator protein for secretion 2 (CAPS2) regulates dense-core vesicle (DCV) exocytosis to facilitate peptidergic and catecholaminergic transmitter release. CAPS2 deficiency in mice has mild neuronal effects but markedly impairs social behavior. Rare de novo Caps2 alterations also occur in autism spectrum disorder, although whether CAPS2-mediated release influences social behavior remains unclear. Here, we demonstrate that CAPS2 is associated with DCV exocytosis-mediated release of the social interaction modulatory peptide oxytocin (OXT). CAPS2 is expressed in hypothalamic OXT neurons and localizes to OXT nerve projection and OXT release sites, such as the pituitary. Caps2 KO mice exhibited reduced plasma albeit increased hypothalamic and pituitary OXT levels, indicating insufficient release. OXT neuron-specific Caps2 conditional KO supported CAPS2 function in pituitary OXT release, also affording impaired social interaction and recognition behavior that could be ameliorated by exogenous OXT administered intranasally. Thus, CAPS2 appears critical for OXT release, thereby being associated with social behavior.SIGNIFICANCE STATEMENT The role of the neuropeptide oxytocin in enhancing social interaction and social bonding behavior has attracted considerable public and neuroscientific attention. A central issue in oxytocin biology concerns how oxytocin release is regulated. Our study provides an important insight into the understanding of oxytocin-dependent social behavior from the perspective of the CAPS2-regulated release mechanism.


Assuntos
Comportamento Animal/fisiologia , Proteínas de Ligação ao Cálcio/metabolismo , Exocitose/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Ocitocina/metabolismo , Comportamento Social , Animais , Hipotálamo/metabolismo , Camundongos , Camundongos Knockout , Vesículas Secretórias/metabolismo
5.
Nature ; 583(7814): 109-114, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32528181

RESUMO

Hibernating mammals actively lower their body temperature to reduce energy expenditure when facing food scarcity1. This ability to induce a hypometabolic state has evoked great interest owing to its potential medical benefits2,3. Here we show that a hypothalamic neuronal circuit in rodents induces a long-lasting hypothermic and hypometabolic state similar to hibernation. In this state, although body temperature and levels of oxygen consumption are kept very low, the ability to regulate metabolism still remains functional, as in hibernation4. There was no obvious damage to tissues and organs or abnormalities in behaviour after recovery from this state. Our findings could enable the development of a method to induce a hibernation-like state, which would have potential applications in non-hibernating mammalian species including humans.


Assuntos
Metabolismo Energético/fisiologia , Hibernação/fisiologia , Hipotálamo/citologia , Hipotálamo/fisiologia , Vias Neurais/citologia , Vias Neurais/fisiologia , Animais , Metabolismo Basal/fisiologia , Núcleo Hipotalâmico Dorsomedial/citologia , Núcleo Hipotalâmico Dorsomedial/fisiologia , Feminino , Neurônios GABAérgicos/metabolismo , Glutamina/metabolismo , Masculino , Camundongos , Consumo de Oxigênio/fisiologia
6.
Nat Commun ; 10(1): 1917, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015467

RESUMO

STXBP1 and SCN2A gene mutations are observed in patients with epilepsies, although the circuit basis remains elusive. Here, we show that mice with haplodeficiency for these genes exhibit absence seizures with spike-and-wave discharges (SWDs) initiated by reduced cortical excitatory transmission into the striatum. Mice deficient for Stxbp1 or Scn2a in cortico-striatal but not cortico-thalamic neurons reproduce SWDs. In Stxbp1 haplodeficient mice, there is a reduction in excitatory transmission from the neocortex to striatal fast-spiking interneurons (FSIs). FSI activity transiently decreases at SWD onset, and pharmacological potentiation of AMPA receptors in the striatum but not in the thalamus suppresses SWDs. Furthermore, in wild-type mice, pharmacological inhibition of cortico-striatal FSI excitatory transmission triggers absence and convulsive seizures in a dose-dependent manner. These findings suggest that impaired cortico-striatal excitatory transmission is a plausible mechanism that triggers epilepsy in Stxbp1 and Scn2a haplodeficient mice.


Assuntos
Corpo Estriado/metabolismo , Proteínas Munc18/genética , Canal de Sódio Disparado por Voltagem NAV1.2/genética , Neocórtex/metabolismo , Convulsões/genética , Transmissão Sináptica , Potenciais de Ação/efeitos dos fármacos , Animais , Anticonvulsivantes/farmacologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/patologia , Dioxóis/farmacologia , Eletroencefalografia , Epilepsia Tipo Ausência/tratamento farmacológico , Epilepsia Tipo Ausência/genética , Epilepsia Tipo Ausência/metabolismo , Epilepsia Tipo Ausência/fisiopatologia , Etossuximida/farmacologia , Regulação da Expressão Gênica , Haploinsuficiência , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Interneurônios/patologia , Camundongos , Camundongos Knockout , Proteínas Munc18/deficiência , Canal de Sódio Disparado por Voltagem NAV1.2/deficiência , Neocórtex/efeitos dos fármacos , Neocórtex/patologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/metabolismo , Piperidinas/farmacologia , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Convulsões/metabolismo , Convulsões/fisiopatologia , Convulsões/prevenção & controle , Transdução de Sinais , Tálamo/efeitos dos fármacos , Tálamo/metabolismo
7.
PLoS One ; 10(7): e0133663, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26196692

RESUMO

Fever is a common response to inflammation and infection. The mechanism involves prostaglandin E2 (PGE2)-EP3 receptor signaling in the hypothalamus, which raises the set point of hypothalamic thermostat for body temperature, but the lipid metabolic pathway for pyretic PGE2 production remains unknown. To reveal the molecular basis of fever initiation, we examined lipopolysaccharides (LPS)-induced fever model in monoacylglycerol lipase (MGL)-deficient (Mgll-/-) mice, CB1 receptor-MGL compound-deficient (Cnr1-/-Mgll-/-) mice, cytosolic phospholipase A2α (cPLA2α)-deficient (Pla2g4a-/-) mice, and diacylglycerol lipase α (DGLα)-deficient (Dagla-/-) mice. Febrile reactions were abolished in Mgll-/- and Cnr1-/-Mgll-/- mice, whereas Cnr1-/-Mgll+/+, Pla2g4a-/- and Dagla-/- mice responded normally, demonstrating that MGL is a critical enzyme for fever, which functions independently of endocannabinoid signals. Intracerebroventricular administration of PGE2 caused fever similarly in Mgll-/- and wild-type control mice, suggesting a lack of pyretic PGE2 production in Mgll-/- hypothalamus, which was confirmed by lipidomics analysis. Normal blood cytokine responses after LPS administration suggested that MGL-deficiency does not affect pyretic cytokine productions. Diurnal body temperature profiles were normal in Mgll-/- mice, demonstrating that MGL is unrelated to physiological thermoregulation. In conclusion, MGL-dependent hydrolysis of endocannabinoid 2-arachidonoylglycerol is necessary for pyretic PGE2 production in the hypothalamus.


Assuntos
Ácidos Araquidônicos/metabolismo , Dinoprostona/metabolismo , Endocanabinoides/metabolismo , Febre/metabolismo , Glicerídeos/metabolismo , Monoacilglicerol Lipases/metabolismo , Animais , Feminino , Fosfolipases A2 do Grupo IV/genética , Fosfolipases A2 do Grupo IV/metabolismo , Hipotálamo/metabolismo , Lipase Lipoproteica/genética , Lipase Lipoproteica/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Monoacilglicerol Lipases/genética , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo
8.
J Neurosci ; 32(4): 1311-28, 2012 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-22279216

RESUMO

In the adult cerebellum, each Purkinje cell (PC) is innervated by a single climbing fiber (CF) in proximal dendrites and 10(5)-10(6) parallel fibers (PFs) in distal dendrites. This organized wiring is established postnatally through heterosynaptic competition between PFs and CFs and homosynaptic competition among multiple CFs. Using PC-specific Cav2.1 knock-out mice (PC-Cav2.1 KO mice), we have demonstrated recently that postsynaptic Cav2.1 plays a key role in the homosynaptic competition by promoting functional strengthening and dendritic translocation of single "winner" CFs. Here, we report that Cav2.1 in PCs, but not in granule cells, is also essential for the heterosynaptic competition. In PC-Cav2.1 KO mice, the extent of CF territory was limited to the soma and basal dendrites, whereas PF territory was expanded reciprocally. Consequently, the proximal somatodendritic domain of PCs displayed hyperspiny transformation and fell into chaotic innervation by multiple CFs and numerous PFs. PC-Cav2.1 KO mice also displayed patterned degeneration of PCs, which occurred preferentially in aldolase C/zebrin II-negative cerebellar compartments. Furthermore, the mutually complementary expression of phospholipase Cß3 (PLCß3) and PLCß4 was altered such that their normally sharp boundary was blurred in the PCs of PC-Cav2.1 KO mice. This blurring was caused by an impaired posttranscriptional downregulation of PLCß3 in PLCß4-dominant PCs during the early postnatal period. A similar alteration was noted in the banded expression of the glutamate transporter EAAT4 in PC-Cav2.1 KO mice. Therefore, Cav2.1 in PCs is essential for competitive synaptic wiring, cell survival, and the establishment of precise boundaries and reciprocity of biochemical compartments in PCs.


Assuntos
Canais de Cálcio Tipo N/fisiologia , Compartimento Celular/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Células de Purkinje/fisiologia , Sinapses/fisiologia , Animais , Animais Recém-Nascidos , Sobrevivência Celular/fisiologia , Cerebelo/química , Cerebelo/citologia , Cerebelo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Cultura de Órgãos , Células de Purkinje/química , Sinapses/química
9.
Neurochem Int ; 44(2): 83-90, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12971910

RESUMO

Rapid administration of large doses of ammonia leads to death of animals, which is largely prevented by pretreatment with N-methyl-D-aspartate (NMDA) receptor antagonists. The present study focuses on a subunit(s) of NMDA receptor involved in ammonia-induced death by use of NMDA receptor GluRepsilon subunit-deficient (GluRepsilon(-/-)) mice and the selective GluRepsilon2 antagonist CP-101,606. Acute ammonia intoxication was induced in mice (eight per group) by a single intraperitoneal (i.p.) injection of ammonium chloride. Appearance of neurological deteriorations depended on the doses of ammonium chloride injected. While wild-type, GluRepsilon1(-/-), GluRepsilon4(-/-), and GluRepsilon1(-/-)/epsilon4(-/-) mice all died by ammonium chloride at 12 mmol/kg during the first tonic convulsions, two of eight GluRepsilon3(-/-) mice survived. Pretreatment of wild-type mice with CP-101,606 prevented two mice from ammonia-induced death. Pretreatment of GluRepsilon3(-/-) mice with CP-101,606 prevented the death of three mice and prolonged the time of death of non-survivors. Similarly, the neuronal form of nitric oxide synthase (NOS) inhibitor 7-nitroindazole (7-NI) as well as the nonselective NOS inhibitor L-NMMA, but not the inducible NOS inhibitor 1400W, partially prevented the death of mice and prolonged the period of death. Furthermore, ammonium chloride prolonged the increase in intracellular free Ca2+ concentration ([Ca2+]i) and subsequent NO production induced by NMDA in the cerebellum. These results suggest that activation of NMDA receptor containing GluRepsilon2 and GluRepsilon3 subunits and following activation of neuronal NOS are involved in acute ammonia intoxication which leads to death of animals.


Assuntos
Amônia/toxicidade , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Amônia/administração & dosagem , Amônia/antagonistas & inibidores , Animais , Cálcio/metabolismo , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Coma/induzido quimicamente , Maleato de Dizocilpina/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Injeções Intraperitoneais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico/fisiologia , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase Tipo I , Piperidinas/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Convulsões/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA