Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(27): 70121-70130, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37145353

RESUMO

Nitrogenous fertilizers have low efficiency in alkaline calcareous soils due to volatilization and denitrification. These losses cause economic environmental constraints. Coating of urea with nanoparticles (NPs) is an innovative strategy to improve crop yields by sustaining N availability. In the current study, zinc oxide nanoparticles (ZnO NPs) were synthesized by precipitation method and characterized for morphology and configuration, bond formation, and crystal assemblage using the X-ray diffraction and scanning electron microscope (SEM). The SEM results confirmed the size of ZnO NPs in the size range of 25 nm with cuboid shape. Urea fertilizer, coated with ZnO NPs, was applied to wheat crop in a pot trial. Two rates of ZnO NPs at 2.8 and 5.7 mg kg-1 were selected to coat the commercial urea. A batch experiment was conducted to ensure the ammonium (NH4+) and nitrate (NO3-) ions release by amending the soil with ZnO NPs coated urea and comparing with non-amended soil. The gradual release of NH4+ was observed for 21 days from the ZnO NP-coated urea. In the second part of trial, seven different treatments of coated and uncoated urea were tested on wheat crop. Urea coated with ZnO nanoparticles at 5.7 mg kg-1 improved all growth attributes and yields. The ZnO NP coated urea increased the N content shoot (1.90 g 100g-1 DW) and potentially biofortified Zn content (47.86 mg kg-1) in wheat grain. The results are indicative of viability of a novel coating for commercial urea that will not only reduce N losses but also supplement Zn without additional cost of labor.


Assuntos
Nanopartículas , Óxido de Zinco , Óxido de Zinco/química , Zinco/análise , Triticum , Solo/química , Disponibilidade Biológica , Ureia , Nitrogênio , Nanopartículas/química
2.
Ecotoxicol Environ Saf ; 215: 112148, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33756292

RESUMO

Low use efficiency of nitrogen (N) and phosphorus (P) is major challenge of modern agriculture. Coating of conventional fertilizers with nanomaterials is a promising technique for improved nutrient use efficiency. In current study, nanoparticles (NPs) of potassium ferrite (KFeO2 NPs) were coated on di-ammonium phosphate (DAP) fertilizer with three rates (2, 5, 10%) of KFeO2 NPs and were evaluated for release of N, P, K and Fe supplementation in clay loam and loam soil up to 60 days. The NPs were characterized for crystal assemblage, bond formation, morphology and configuration using the x-ray diffraction (XRD), scanning electron microscope (SEM) and Fourier transform-infra red spectroscopy (FT-IR). The results showed that size of NPs ranged between 7 and 18 nm. The controlled release of P in 10% KFeO2 nano-coated DAP was observed throughout the incubation period. The P release kept on increasing from day-1 (14.5 µg g-1) to day-60 (178.6 µg g-1) in coated DAP (10%) in loam soil. The maximum release of 50.4 µg g-1 NH4+1-N in coated DAP (10%) was observed after 30 days of incubation. The release of NO3-1-N was consistent up to 45 and 60 days in clay loam and loam soil, respectively. The average release of potassium and iron in 60 days was 19.7 µg g-1 and 7.3 µg g-1 higher in 10% coated DAP than traditional DAP in clay loam soil. It was concluded that KFeO2 nano-coated DAP supplied P and mineral N for longer period of time in both soils, and some higher coating levels should be tested in future.


Assuntos
Fertilizantes/análise , Nanopartículas/química , Fosfatos/química , Potássio , Agricultura , Argila , Compostos Férricos , Nitrogênio , Nutrientes , Fósforo/química , Solo/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA