Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Res Vet Sci ; 152: 687-697, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36242797

RESUMO

Currently, the main limitation for the use of adult differentiated chondrocytes in cell-based therapy and tissue engineering for the repair of articular cartilage is the difficulty of maintaining their state of differentiation during cell expansion. The adult articular cartilage has no direct blood supply, and local oxygen concentrations range from 5%-10% at the surface near the synovial fluid to less than 1% in the deep layer. Low oxygen tension is currently considered an important environmental condition for chondrocytes, and hypoxia has been explored as a signal potentially promoting differentiation and matrix deposition. In the present study, hypoxia and PL supplementation were studied to maintain differentiation in adult articular chondrocytes. Freshly isolated equine articular chondrocytes were grown in monolayer culture at a low seeding density (condition favoring proliferation and dedifferentiation) and in alginate beads (3D culture condition maintaining chondrocyte differentiation) both in normoxic and hypoxic conditions and in various conditions of supplementation or deprivation (fetal bovine serum [FBS]- and PL-free; 10% FBS; 5% PL; 10% PL). Results demonstrated that hypoxia is a micro-environmental condition that reduces chondrocyte dedifferentiation or maintains differentiation during in vitro expansion, as shown by the sustained expression of differentiation markers (COL2, ACAN, SOX9, HIF1a) and the reduction of dedifferentiation marker expression (COL1, RUNX2). In association with hypoxia, PL supplementation demonstrated a positive effect on chondrocyte differentiation in association with hypoxia. This promising result should be confirmed in other conditions of chondrocyte differentiation before proposing PL as a complete alternative to xenogenic serum for the expansion of articular chondrocytes.


Assuntos
Cartilagem Articular , Condrócitos , Cavalos , Animais , Condrócitos/metabolismo , Células Cultivadas , Diferenciação Celular , Hipóxia/metabolismo , Hipóxia/veterinária , Oxigênio , Suplementos Nutricionais
2.
Porcine Health Manag ; 8(1): 21, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35590351

RESUMO

BACKGROUND: Gut microbial anaerobic fermentation produces short-chain fatty acids (SCFA), which are important substrates for energy metabolism and anabolic processes in mammals. SCFA can regulate the inflammatory response and increase the intestinal barrier integrity by enhancing the tight junction protein (TJp) functions, which prevent the passage of antigens through the paracellular space. The aim of this study was to evaluate the effect of in vitro supplementation with SCFA (acetate, propionate, butyrate, and lactate) at different concentrations on viability, nitric oxide (NO) release (oxidative stress parameter) in cell culture supernatants, and gene expression of TJp (occludin, zonula occludens-1, and claudin-4) and pro-inflammatory pathway-related mediators (ß-defensin 1, TNF-α, and NF-κB) in intestinal porcine epithelial cell line J2 (IPEC-J2). RESULTS: The SCFA tested showed significant effects on IPEC-J2, which proved to be dependent on the type and specific concentration of the fatty acid. Acetate stimulated cell viability and NO production in a dose-dependent manner (P < 0.05), and specifically, 5 mM acetate activated the barrier response through claudin-4, and immunity through ß-defensin 1 (P < 0.05). The same effect on these parameters was shown by propionate supplementation, especially at 1 mM (P < 0.05). Contrarily, lactate and butyrate showed different effects compared to acetate and propionate, as they did not stimulate an increase of cell viability and regulated barrier integrity through zonula occludens-1 and occludin, especially at 30 mM and 0.5 mM, respectively (P < 0.05). Upon supplementation with SCFA, the increase of NO release at low levels proved not to have detrimental effects on IPEC-J2 proliferation/survival, and in the case of acetate and propionate, such levels were associated with beneficial effects. Furthermore, the results showed that SCFA supplementation induced ß-defensin 1 (P < 0.05) that, in turn, may have been involved in the inhibition of TNF-α and NF-κB gene expression (P < 0.05). CONCLUSIONS: The present study demonstrates that the supplementation with specific SCFA in IPEC-J2 can significantly modulate the process of barrier protection, and that particularly acetate and propionate sustain cell viability, low oxidative stress activity and intestinal barrier function.

3.
Res Vet Sci ; 133: 98-105, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32961475

RESUMO

In vitro studies have demonstrated that platelet lysate (PL) can serve as an alternative to platelet-rich plasma (PRP) to sustain chondrocyte proliferation and production of extracellular matrix components in chondrocytes. The present study aimed to evaluate the direct effects of PL on equine articular chondrocytes in vitro in order to provide a rationale for in vivo use of PL. An in vitro cell proliferation and de-differentiation model was used: primary articular chondrocytes isolated from horse articular cartilage were cultured at low density under adherent conditions to promote cell proliferation. Chondrocytes were cultured in serum-free medium, 10% foetal bovine serum (FBS) supplemented medium, or in the presence of alginate beads containing 5%, 10% and 20% PL. Cell proliferation and gene expression of relevant chondrocyte differentiation markers were investigated. The proliferative capacity of cultured chondrocytes, was sustained more effectively at certain concentrations of PL as compared to that with FBS. In addition, as opposed to FBS, PL, particularly at percentages of 5% and 10%, could maintain the gene expression pattern of relevant chondrocyte differentiation markers. In particular, 5% PL supplementation showed the best compromise between chondrocyte proliferation capacity and maintenance of differentiation. The results of the present study provide a rationale for using PL as an alternative to FBS for in vitro expansion of chondrocytes for matrix-assisted chondrocyte implantation, construction of 3D scaffolds for tissue engineering, and treatment of damaged articular cartilage.


Assuntos
Plaquetas/fisiologia , Cartilagem Articular/citologia , Diferenciação Celular , Condrócitos/fisiologia , Engenharia Tecidual , Alginatos , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células , Células Cultivadas , Condrócitos/citologia , Condrócitos/metabolismo , Meios de Cultura Livres de Soro , Matriz Extracelular/metabolismo , Cavalos , Engenharia Tecidual/métodos , Engenharia Tecidual/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA