Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 39(2): 49, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36542187

RESUMO

Microbial exopolysaccharides (EPSs) are mostly produced by bacteria and fungi and have potential use in the production of biomedical products such as nutraceuticals and in tissue engineering applications. The present study investigated the in vitro biological activities and in vivo wound healing effects of EPSs produced from a Sclerotium-forming fungus (Sclerotium glucanicum DSM 2159) and a yeast (Rhodosporidium babjevae), denoted as scleroglucan (Scl) and EPS-R, respectively. EPS yields of 0.9 ± 0.07 g/L and 1.11 ± 0.4 g/L were obtained from S. glucanicum and R. babjevae, respectively. The physicochemical properties of the EPSs were characterized using infrared spectroscopy and scanning electron microscopy. Further investigations of the biological properties showed that both EPSs were cytocompatible toward the human fibroblast cell line and demonstrated  hemocompatibility. Favorable wound healing capacities of the EPSs (10 mg/mL) were also established via in vivo tests. The present study therefore showed that the EPSs produced by S. glucanicum and R. babjevae have the potential use as biocompatible components for the promotion of dermal wound healing.


Assuntos
Ascomicetos , Cicatrização , Humanos , Bactérias/metabolismo , Ascomicetos/metabolismo , Suplementos Nutricionais , Linhagem Celular , Polissacarídeos Bacterianos/farmacologia , Polissacarídeos Bacterianos/metabolismo
2.
Lasers Med Sci ; 37(2): 1333-1341, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34406533

RESUMO

Nanoparticle-mediated hyperthermia is one of the prominent adjuvant therapies which has been faced by many problematic challenges such as efficiency and safety. To compare the nanoparticle-mediated photothermal therapy and radiofrequency electric field hyperthermia, green-synthesized curcumin-coated gold nanoparticles (Cur@AuNPs) were applied in an in vitro study. Using recently published methodologies, each step of the study was performed. Through green chemistry, curcumin was applied as both a reducing and a capping agent in the gold nanoparticle synthesis process. Various techniques were applied for the characterization of the synthesized nanoparticles. The heating rate of Cur@AuNPs in the presence of RFEF or laser irradiation was recorded by using a non-contact thermometer. The cellular uptake of the Cur@AuNPs was studied by ICP-AES. The cellular viability and apoptosis rate of different treatment were measured to investigate the effect of two different nano-hyperthermia techniques on the murine colorectal cancer cell line. The average size of Cur@AuNPs was 7.2 ± 3.3 nm. The stability of the gold nanoparticles in the phosphate buffer saline with and without fetal bovine serum was verified by UV-Vis spectroscopy. FTIR, UV-Vis spectroscopy, and TEM indicate that the stability is a result of phenolic coating on the surface of nanoparticles. Cur@AuNPs can absorb both light and radiofrequency electric field exposure in a way that could kill cancerous cells in a significant number (30% in 64 µg/ml concentration). Green-synthesized Cur@AuNPs could induce apoptosis cell death in photothermal therapy and radiofrequency electric field hyperthermia.


Assuntos
Curcumina , Hipertermia Induzida , Nanopartículas Metálicas , Animais , Sobrevivência Celular , Curcumina/farmacologia , Ouro/química , Hipertermia Induzida/métodos , Nanopartículas Metálicas/química , Camundongos
3.
Sci Rep ; 11(1): 12599, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34131254

RESUMO

In the present study, probiotic potato chips containing a newly isolated probiotic Lactococcus lactis KUMS-T18 strain were produced by using a simple spraying method and then enhancing the stability, survival rate, and sensory characteristics of product during storage at 4 °C and 25 °C was examined for four months. Based on the results, Lactococcus lactis KUMS-T18 isolated from traditional Tarkhineh as a safe strain had high tolerance to low pH and high bile salt, anti-pathogenic activity, hydrophobicity, adhesion to human epithelial cells, auto- and co-aggregation, cholesterol assimilation and antibiotic susceptibility. Meanwhile, by micro-coating the probiotic cells in Tarkhineh formulations, elliptical to spherical shape (460-740 µm) probiotic drops were produced. The results revealed that potato chips produced with turmeric and plain Tarkhineh during storage at 4 °C, had excellent protection abilities for probiotic cells with about 4.52 and 3.46 log decreases in CFU/g respectively. On the other hand, probiotic potato chips, compared to non-probiotic and commercial potato chips, showed the criteria of probiotic products such as excellent quality and superior sensory characteristics. In summary, this study proved that probiotic Lactococcus lactis KUMS-T18 strain covered by Tarkhineh formulations as protective matrix has high potential to be used in the production of probiotic potato chips.


Assuntos
Lactococcus lactis/química , Probióticos/química , Animais , Ácidos e Sais Biliares , Composição de Medicamentos , Humanos , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Probióticos/farmacologia , Solanum tuberosum/química
4.
BMC Complement Med Ther ; 21(1): 111, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33827547

RESUMO

BACKGROUND: Interactive dressings are innovatively designed to interact with the wound surface and alter the wound environment to promote wound healing. In the current study, we integrated the physicochemical properties of Poly (caprolactone)/ Poly (vinyl alcohol)/Collagen (PCL/PVA/Col) nanofibers with the biological activities of Momordica charantia pulp extract to develop an efficient wound dressing. The electrospinning method was applied to fabricate the nanofibers, and the prepared wound dressings were thoroughly characterized. RESULTS: SEM imaging showed that the nanofibers were uniform, straight, without any beds with a diameter in the range of 260 to 480 nm. Increasing the concentration of the extract increased the diameter of the nanofibers and also the wettability characteristics while reduced the ultimate tensile strength from 4.37 ± 0.90 MPa for PCL/PVA/Col to 1.62 ± 0.50 MPa for PCL/PVA/Col/Ex 10% (p < 0.05). The in vivo studies showed that the application of the wound dressings significantly enhanced the healing process and the highest wound closure, 94.01 ± 8.12%, was obtained by PCL/PVA/Col/Ex 10% nanofibers (p < 0.05). CONCLUSION: The incorporation of the extract had no significant effects on nanofibers' porosity, water vapor permeability, and swelling characteristics. The in vitro evaluations showed that the fabricated nanofibers were hemocompatible, cytocompatible, and prevent bacterial penetration through the dressing. These findings implied that the PCL/PVA/Col/Ex nanofibers can be applied as the wound dressing materials.


Assuntos
Bandagens , Momordica charantia , Nanofibras/química , Extratos Vegetais/uso terapêutico , Animais , Técnicas de Cultura de Células , Masculino , Álcool de Polivinil/química , Ratos , Cicatrização/efeitos dos fármacos
5.
Mar Drugs ; 20(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35049874

RESUMO

In the current paper, we fabricated, characterized, and applied nanocomposite hydrogel based on alginate (Alg) and nano-hydroxyapatite (nHA) loaded with phenolic purified extracts from the aerial part of Linum usitatissimum (LOH) as the bone tissue engineering scaffold. nHA was synthesized based on the wet chemical technique/precipitation reaction and incorporated into Alg hydrogel as the filler via physical cross-linking. The characterizations (SEM, DLS, and Zeta potential) revealed that the synthesized nHA possess a plate-like shape with nanometric dimensions. The fabricated nanocomposite has a porous architecture with interconnected pores. The average pore size was in the range of 100-200 µm and the porosity range of 80-90%. The LOH release measurement showed that about 90% of the loaded drug was released within 12 h followed by a sustained release over 48 h. The in vitro assessments showed that the nanocomposite possesses significant antioxidant activity promoting bone regeneration. The hemolysis induction measurement showed that the nanocomposites were hemocompatible with negligible hemolysis induction. The cell viability/proliferation confirmed the biocompatibility of the nanocomposites, which induced proliferative effects in a dose-dependent manner. This study revealed the fabricated nanocomposites are bioactive and osteoactive applicable for bone tissue engineering applications.


Assuntos
Alginatos/farmacologia , Osso e Ossos/efeitos dos fármacos , Durapatita/farmacologia , Linho , Extratos Vegetais/farmacologia , Alicerces Teciduais , Alginatos/química , Organismos Aquáticos , Regeneração Óssea , Linhagem Celular/efeitos dos fármacos , Durapatita/química , Humanos , Nanocompostos , Extratos Vegetais/química
6.
Drug Discov Today ; 25(12): 2182-2200, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33010479

RESUMO

The high prescribed dose of anticancer drugs and their resulting adverse effects on healthy tissue are significant drawbacks to conventional chemotherapy (CTP). Ideally, drugs should have the lowest possible degree of interaction with healthy cells, which would diminish any adverse effects. Therefore, an ideal scenario to bring about improvements in CTP is the use of technological strategies to ensure the efficient, specific, and selective transport and/or release of drugs to the target site. One practical and feasible solution to promote the efficiency of conventional CTP is the use of ultrasound (US). In this review, we highlight the potential role of US in combination with lipid-based carriers to achieve a targeted CTP strategy in engineered smart drug delivery systems.


Assuntos
Sistemas de Liberação de Medicamentos , Lipídeos/administração & dosagem , Nanoestruturas/administração & dosagem , Ondas Ultrassônicas , Animais , Humanos , Hipertermia Induzida , Neoplasias/terapia
7.
Drug Dev Ind Pharm ; 46(11): 1832-1843, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32897756

RESUMO

A novel multi-stimuli-responsive theranostic nanomedicine was designed and fabricated by the conjugation of a thiol end-capped poly(N-isopropylacrylamide-block-acrylic acid) (HS-PNIPAAm-b-PAA) onto Fe3O4@Au nanoparticles (NPs) followed by physical loading of doxorubicin hydrochloride (Dox) as a general anticancer drug. For this purpose, Fe3O4@Au NPs were fabricated through small Au nanolayer grown on larger magnetic NPs. A HS-PNIPAAm-b-PAA was synthesized through an atom transfer radical polymerization (ATRP) approach, and then conjugated with as-synthesized Fe3O4@Au NPs by Au-S bonding. The Dox loading capacity of the synthesized Fe3O4@Au/Polymer theranostic NPs was calculated to be 81%. The theranostic nanomedicine exhibited excellent in vitro drug release behavior under pH and thermal stimuli. The anticancer activity evaluation using MTT assay (against MCF7 cells) revealed that the fabricated Fe3O4@Au/Polymer has high potential as theranostic nanomedicine for cancer therapy of solid tumors. This nanosystem can also applied in photothermal therapy, hyperthermia therapy, and their combination with chemotherapy due to presence of gold and Fe3O4 nanomaterials in its structure.


Assuntos
Hipertermia Induzida , Nanopartículas Metálicas , Nanopartículas , Neoplasias , Doxorrubicina/química , Doxorrubicina/farmacologia , Ouro , Humanos , Neoplasias/tratamento farmacológico , Nanomedicina Teranóstica
8.
IET Nanobiotechnol ; 14(5): 428-432, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32691747

RESUMO

The main focus of the current study is the fabrication of a multifunctional nanohybrid based on graphene oxide (GO)/iron oxide/gold nanoparticles (NPs) as the combinatorial cancer treatment agent. Gold and iron oxide NPs formed on the GONPs via the in situ synthesis approach. The characterisations showed that gold and iron oxide NPs formed onto the GO. Cell toxicity assessment revealed that the fabricated nanohybrid exhibited negligible toxicity against MCF-7 cells in low doses (<50 ppm). Temperature measurement showed a time and dose-dependent heat elevation under the interaction of the nanohybrid with the radio frequency (RF) wave. The highest temperature was recorded using 200 ppm concentration nanohybrid during 40 min exposure. The combinatorial treatments demonstrated that the maximum cell death (average of 53%) was induced with the combination of the nanohybrid with RF waves and radiotherapy (RT). The mechanistic study using the flow cytometry technique illustrated that early apoptosis was the main underlying cell death. Moreover, the dose enhancement factor of 1.63 and 2.63 were obtained from RT and RF, respectively. To sum up, the authors' findings indicated that the prepared nanohybrid could be considered as multifunctional and combinatorial cancer therapy agents.


Assuntos
Antineoplásicos/química , Ouro/química , Grafite/química , Nanopartículas Magnéticas de Óxido de Ferro/química , Nanoestruturas/química , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ouro/farmacologia , Ouro/toxicidade , Grafite/farmacologia , Grafite/toxicidade , Humanos , Hipertermia Induzida , Células MCF-7 , Nanopartículas Magnéticas de Óxido de Ferro/toxicidade , Nanoestruturas/toxicidade , Radioterapia
9.
Sci Rep ; 10(1): 8312, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32433566

RESUMO

Functional wound dressing with tailored physicochemical and biological properties is vital for diabetic foot ulcer (DFU) treatment. Our main objective in the current study was to fabricate Cellulose Acetate/Gelatin (CA/Gel) electrospun mat loaded with berberine (Beri) as the DFU-specific wound dressing. The wound healing efficacy of the fabricated dressings was evaluated in streptozotocin-induced diabetic rats. The results demonstrated an average nanofiber diameter of 502 ± 150 nm, and the tensile strength, contact angle, porosity, water vapor permeability and water uptake ratio of CA/Gel nanofibers were around 2.83 ± 0.08 MPa, 58.07 ± 2.35°, 78.17 ± 1.04%, 11.23 ± 1.05 mg/cm2/hr, and 12.78 ± 0.32%, respectively, while these values for CA/Gel/Beri nanofibers were 2.69 ± 0.05 MPa, 56.93 ± 1°, 76.17 ± 0.76%, 10.17 ± 0.21 mg/cm2/hr, and 14.37 ± 0.42%, respectively. The antibacterial evaluations demonstrated that the dressings exhibited potent antibacterial activity. The collagen density of 88.8 ± 6.7% and the angiogenesis score of 19.8 ± 3.8 obtained in the animal studies indicate a proper wound healing. These findings implied that the incorporation of berberine did not compromise the physical properties of dressing, while improving the biological activities. In conclusion, our results indicated that the prepared mat is a proper wound dressing for DFU management and treatment.


Assuntos
Antibacterianos/administração & dosagem , Bandagens , Berberina/administração & dosagem , Celulose/análogos & derivados , Pé Diabético/tratamento farmacológico , Gelatina , Nanofibras/uso terapêutico , Animais , Antibacterianos/uso terapêutico , Bandagens/microbiologia , Berberina/uso terapêutico , Fenômenos Biomecânicos , Células L , Masculino , Teste de Materiais , Camundongos , Nanofibras/química , Ratos , Ratos Wistar , Cicatrização/efeitos dos fármacos
10.
J Cancer Res Clin Oncol ; 142(11): 2217-29, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27209529

RESUMO

Conventional cancer treatment methods suffer from many limitations such as non-specificity and low efficacy in discrimination between healthy and cancer cells. Recent developments in nanotechnology have introduced novel and smart therapeutic nanomaterials that basically take advantage of various targeting approaches. Targeted nanomaterials selectively bind to the cancer cells and affect them with minor effects on healthy cells. Folic acid (folate) is an essential molecule in DNA synthesis pathway which is highly needed for cancer cell duplication. Some certain cancer cells overexpress folate receptors higher than normal cells, and this fact is the basis of folate targeting strategy. There are many publications reporting various folate conjugated nanomaterials among which folate-conjugated gold nanoparticles hold great promises in targeted cancer therapy. Gold nanoparticles have been identified as promising candidates for new cancer therapy modalities because of biocompatibility, easy synthesis and functionalization, chemo-physical stability, and optical tunable characteristics. In the last decade, there has been a significant explosion in gold nanoparticles research, with a rapid increase in publications related to the area of biomedicine. Although there are many reports published on "gold nanoparticles" and "folate targeting," there are a few reports on "folate-conjugated gold nanoparticles" in biomedical literature. This paper intends to review and illustrate the recent advances in biomedicine which have been designed on the basis of folate-conjugated gold nanoparticles.


Assuntos
Ácido Fólico/administração & dosagem , Ouro/administração & dosagem , Nanopartículas Metálicas/administração & dosagem , Neoplasias/terapia , Animais , Ácido Fólico/química , Ácido Fólico/farmacocinética , Ouro/química , Humanos , Hipertermia Induzida/métodos , Nanopartículas Metálicas/química , Terapia de Alvo Molecular/métodos , Nanomedicina/métodos , Neoplasias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA