Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 29(25): 38198-38211, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35067888

RESUMO

Silver nanoparticles (AgNPs) are commonly utilized in medicine. However, they have negative effects on the majority of organs, including the reproductive system. AgNPs were reported to be able to reach the testicular tissues due to their nano size, which allows them to pass through blood-testicular barriers. The goal of this study was to see if alpha-lipoic acid (LA) or Ginkgo biloba (GB) might protect adult rat testes after intraperitoneal injection of AgNPs. Forty male healthy adult Wister albino rats were randomly assigned to four groups: control, AgNPs-intoxicated group intraperitoneally injected AgNPs 50 mg/kg b.w, 3 times a week; LA + AgNPs group intoxicated with AgNPs and orally gavaged with 100 mg LA/kg b.w; and GB + AgNPs group injected with AgNPs and orally given GB extract 120 mg/kg b.w for 30 consecutive days. Biochemical changes (testosterone, ACP, and prostatic acid phosphatase), oxidative indices, mRNA expression of proapoptotic (BAX) and anti-apoptotic (BCL-2) biomarkers, histological, and immunohistochemical changes in testicular tissues were investigated. Significant decrease in serum testosterone level and elevation in ACP and PACP enzyme activity in AgNPs-treated rats. As well, there were lowering in tGSH, GSH GR, GPx, and elevation in MDA and GSSG values. AgNPs-exposed rats expressed downregulation of testicular thirodexin-1 (Txn-1), transforming growth factor-1ß (TGF-1ß), anti-apoptotic (BCL-2), and upregulaion of proapoptotic biomarkers (BAX) mRNA expressions. Strong positive action to BAX and lowering the action of Ki-67 antibody were observed. Because of their antioxidant, anti-inflammatory, and anti-apoptotic properties, cotreatment with LA or GB could be beneficial in reducing the harmful effects of AgNPs on the testicles.


Assuntos
Nanopartículas Metálicas , Doenças Testiculares , Ácido Tióctico , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Biomarcadores/metabolismo , Ginkgo biloba , Humanos , Masculino , Nanopartículas Metálicas/toxicidade , Estresse Oxidativo , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Prata/química , Testosterona , Ácido Tióctico/metabolismo , Ácido Tióctico/farmacologia , Proteína X Associada a bcl-2/metabolismo
2.
Animals (Basel) ; 10(3)2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-32182754

RESUMO

Poultry enterprises have sustained rapid development through the last three decennaries. For which reason, higher utilization of antibacterial, either as therapeutic or growth promoting agents, has been accepted. Owing to the concern of developing bacterial resistance among populations towards antibiotic generations, accumulation of antibacterial remaining's in chicken products and elevating shopper request for outcomes without antibacterial remaining's, looking for unconventional solutions that could exchange antibacterial without influencing productiveness or product characters. Using natural alternatives including ginger, garlic prebiotics, organic acids, plant extracts, etheric oils and immune stimulants have been applied to advance the performance, hold poultry productiveness, prevent and control the enteric pathogens and minimize the antibacterial utilization in the poultry production in recent years. The use of a single replacement or ideal assemblage of different choices besides good supervision and livestock welfare may play a basic role in maximizing benefits and preserving poultry productiveness. The object of this review was to support an outline of the recent knowledge on the use of the natural replacements (ginger and its derivatives) in poultry feed as feed additives and their effects on poultry performance, egg and meat quality, health as well as the economic efficiency.

3.
Sci Total Environ ; 707: 135996, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-31865090

RESUMO

Heat stress (HS) has adverse effects on the body: it decreases body weight, feed efficiency, feed intake, carcass quality, and nutrient digestibility. Chromium (Cr) can prevent lipid peroxidation induced by HS through its strong antioxidant activities, especially when it is added to the poultry diet. It improves the action of insulin and nutrient metabolism (of lipids, proteins, nucleic acid, and carbohydrates) through activation of enzymes associated with such pathways. The results of the studies on Cr added to diets with concentrations of 0.05 mg Cr/kg of Cr-methionine led to improved feed efficiency and DM intake by cows and Holstein dairy calves exposed to high environmental temperatures. Moreover, calves that received Cr at levels of 0.05 mg/kg of body weight tended to have higher serum concentrations of glucose and higher ratios of insulin to glucose. In heat-stressed pigs, Cr addition (200 ppb) increased blood neutrophils by about 37%. Several studies have asserted that Cr can inhibit inflammation in lactating cows by promoting the release of Hsp72, assisting production of IL-10 and inhibiting degradation of IκBα in HS conditions. In addition, Cr supplementation was observed to possibly have positive impacts on both cell-mediated and humeral immunity in heat-stressed buffalo calves. Studies over the last two decades have shown with certainty that chromium supplementation has an impact on many variables in chickens. Moreover, Cr is believed to increase insulin action in insulin-sensitive tissues (i.e., adipose and muscles), resulting in increased farm animal productivity through the improvement of feed intake, growth rate, carcass quality, reproductive parameters and immune functions.


Assuntos
Cromo/análise , Ração Animal , Animais , Galinhas , Dieta , Suplementos Nutricionais , Feminino , Lactação , Suínos
4.
Environ Sci Pollut Res Int ; 26(23): 23209-23218, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31243654

RESUMO

Lead (Pb) is a toxic heavy metal and an environmental pollutant, particularly because of its anthropogenic activity. The main impacts of Pb is recognized to cause injurious influences of various levels of the tropic chain, due to bio-accumulated lead causes many health issues such as intoxication of different body organs, such as kidneys and liver, and reproductive and nervous systems. Industrial lead toxicity has reduced as a result of the attempts to decrease the lead levels in the surrounding work environment. Conversably, health risks related with long-term environmental exposure to a low dose of Pb have been steadily demonstrated. Long-term exposure to lead toxicity caused inflammatory infiltration, degenerative changes in testicular tissues, reduction in spermatocytes, necrosis of hepatocytes, degeneration in renal tubules, and renal epithelium hypertrophy. Hence, we need an influential approach to vanquish lead toxicity. This consequence has emerged the necessity for potentially safe represent remedy, favorably keeping both enhancement and chelating of the antioxidant competences. Many antioxidants have been used for chelating heavy toxic pollutants such as lead and oxidative stress released in excess during lead exposure. Several studies have stated the noticeable gathering of herbal singly or in combination in modulating lead-induced disturbances, therefore proposing great promise in enhancing health status and welfare of man as well as animals. For this, in the current review, we tried to discuss the enormous harmful influences of lead toxicity on the animal model and the disturbing truth that this detrimental toxic substance can be found quite simply in the surroundings and amplitude.


Assuntos
Ração Animal/normas , Antioxidantes/farmacologia , Quelantes/farmacologia , Poluentes Ambientais/toxicidade , Intoxicação por Chumbo/prevenção & controle , Chumbo/toxicidade , Extratos Vegetais/farmacologia , Animais , Antioxidantes/administração & dosagem , Humanos , Intoxicação por Chumbo/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/administração & dosagem
5.
Environ Sci Pollut Res Int ; 26(4): 3659-3665, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30535736

RESUMO

The ubiquitous use of diazinon (DZN, an organophosphorus insecticide) has increased the probability of occupational, public, and the ecosystem exposure; these exposures are linked to negative health outcomes. The flavonoids curcumin (CUR) and quercetin (QUE) exert significant anti-inflammatory and antioxidant activities against toxicants, including insecticides. However, it is unclear whether their combination enhances these activities. Therefore, 40 albino rat were divided randomly into the CTR, DZN, CUR + DZN, QUE + DZN, and CUR + QUE + DZN groups, which are treated daily via gavage for 28 days. DZN induced neurohepatic inflammation and oxidative damage, which was confirmed by significant (P < 0.05) induction of aspartate and alanine aminotransferases, alkaline phosphatase, lactate dehydrogenase, γ-glutamyl transferase, and tumor necrosis factor-α and inhibition of acetylcholinesterase activity. Furthermore, the liver and brain of DZN-exposed rats exhibited a notable elevation in MDA level paralleled with reduction in antioxidant molecules, i.e., glutathione, superoxide dismutase, glutathione peroxidase, and catalase. The pretreatment of DZN-intoxicated rats with CUR or QUE substantially mitigated neurohepatic dysfunction and inflammation and improved liver and brain antioxidant status with reducing oxidative stress levels. Furthermore, pretreatment with CUR + QUE synergistically restored the neurohepatic dysfunction and oxidative levels to approximately normal levels. The overall results suggested that CUR or QUE inhibits DZN-mediated neurohepatic toxicity via their favorable anti-inflammatory, antioxidant, and free radical-scavenging activities. Moreover, both QUE and CUR may be mutual adjuvant agents against oxidative stress neurohepatic damages.


Assuntos
Curcumina/farmacologia , Diazinon/toxicidade , Inflamação/tratamento farmacológico , Quercetina/farmacologia , Acetilcolinesterase/metabolismo , Animais , Antioxidantes/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Inibidores da Colinesterase/toxicidade , Sinergismo Farmacológico , Enzimas/metabolismo , Glutationa/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inseticidas/toxicidade , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos
6.
Environ Sci Pollut Res Int ; 25(32): 31971-31986, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30229484

RESUMO

Some of pathogenic bacteria and fungi have the ability to produce fetal toxins which may be the direct causes of cytotoxicity or cellular dysfunction in the colonization site. Biological and non-biological environmental factors, challenge and microbes influence the effect of toxins on these pathogens. Modern research mentions that many natural materials can reduce the production of toxins in pathogenic microbes. However, researches that explain the mechanical theories of their effects are meager. This review aimed to discuss the ameliorative potential role of plant-derived compounds and probiotics to reduce the toxin production of food-borne microbes either in poultry bodies or poultry feedstuff. Moreover, studies that highlight their own toxicological mechanisms have been discussed. Adding natural additives to feed has a clear positive effect on the enzymatic and microbiological appearance of the small intestine without any adverse effect on the liver. Studies in this respect were proposed to clarify the effects of these natural additives for feed. In conclusion, it could be suggested that the incorporation of probiotics, herbal extracts, and herbs in the poultry diets has some beneficial effects on productive performance, without a positive impact on economic efficiency. In addition, the use of these natural additives in feed has a useful impact on the microbiological appearance of the small intestine and do not have any adverse impacts on intestinal absorption or liver activity as evidenced by histological examination.


Assuntos
Ração Animal/análise , Anti-Infecciosos/farmacologia , Extratos Vegetais/farmacologia , Plantas/química , Probióticos/farmacologia , Toxinas Biológicas/metabolismo , Ração Animal/microbiologia , Animais , Anti-Infecciosos/análise , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Fungos/efeitos dos fármacos , Fungos/metabolismo , Extratos Vegetais/análise , Aves Domésticas/crescimento & desenvolvimento , Probióticos/análise , Toxinas Biológicas/análise
7.
Environ Sci Pollut Res Int ; 25(15): 14397-14406, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29700747

RESUMO

Water represents 71% of all earth area and about 97% of this water is salty water. So, only 3% of the overall world water quantity is freshwater. Human can benefit only from 1% of this water and the remaining 2% freeze at both poles of earth. Therefore, it is important to preserve the freshwater through increasing the plants consuming salty water. The future prosperity of feed resources in arid and semi-arid countries depends on economic use of alternative resources that have been marginalized for long periods of time, such as halophytic plants, which are one such potential future resource. Halophyte plants can grow in high salinity water and soil and to some extent during drought. The growth of these plants depends on the contact of the salted water with plant roots as in semi-desert saline water, mangrove swamps, marshes, and seashores. Halophyte plants need high levels of sodium chloride in the soil water for growth, and the soil water must also contain high levels of salts, as sodium hydroxide or magnesium sulfate. There are many uses for halophyte plants, including feed for animals, vegetables, drugs, sand dune stabilizers, wind shelter, soil cover, wetland cultivation, laundry detergents, and paper production. This paper will focus on the use of halophytes as a feed additive for animals. In spite of the good nutritional value of halophytes, some anti-nutritional factors as nitrates, nitrite complexes, tannins, glycosides, phenolic compounds, saponins, oxalates, and alkaloids may be present in some of them. The presence of such anti-nutritional agents makes halophytes unpalatable to animals, which tends to reduce feed intake and nutrient use. Therefore, the negative effects of these plants on animal performance are the only objection against using halophytes in animal feed diets. This review article highlights the beneficial impact of considering halophytes in animal feeding on saving freshwater and illustrates its nutritive value for livestock from different aspects.


Assuntos
Raízes de Plantas/química , Plantas Tolerantes a Sal , Cloreto de Sódio/farmacologia , Ração Animal , Animais , Água Doce , Humanos , Gado , Raízes de Plantas/efeitos dos fármacos , Plantas Tolerantes a Sal/química , Cloreto de Sódio/química , Solo , Áreas Alagadas
8.
Ecotoxicol Environ Saf ; 156: 311-321, 2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-29571109

RESUMO

The present study was conducted to explore the toxic effects of lead (Pb) on the physiological responses of Japanese quails and to investigate the potential modulatory role of Yucca schidigera extract (YSE) against these effects. 360 mature Japanese quails (at 2 months of age) were used and the experiment was lasted for 8 weeks. The birds were divided into six equal groups as follow: control (basal diet, BD), BD+Pb (100 mg/kg diet), BD+YSE (100 mg/kg diet), BD+YSE (200 mg/kg diet), BD+Pb (100 mg/kg diet) +YSE (100 mg/kg diet) and BD+ Pb (100 mg/kg diet) + YSE (200 mg/kg diet). Pb induced a significant reduction in superoxide dismutase (SOD) and catalase (CAT) activities and reduced glutathione (GSH) level. While, increased protein carbonyl (PC) and malondialdehyde (MDA) content in tissues of exposed birds. Pb increased level of 8-hydroxy-2-deoxyguanosine (8-OHdG) and lactate dehydrogenase (LDH) activity in serum. YSE significantly reduced the Pb -induced oxidative stress in co-treated groups especially at 200 mg/kg diet. YSE could modulate the Pb -induced decreased urea, creatinine and beta-2 microglobulin (B2M) levels. YSE200 was found to be better than the YSE100 in decreasing levels of inflammatory markers including tumor necrosis factor (TNF-α), nitric oxide (NO), transforming growth factor-ß1 (TGF-ß1) and vascular endothelial growth factor (VEGF). Furthermore, YSE significantly regulates glucose homeostasis in co-exposed quails. Pb residues were found to be significantly higher in kidney and pancreas tissues of Pb group compared to other groups. YES decreased the expression of metallothionein-1 in the renal and pancreatic tissues, while elevated insulin expression in the pancreatic cells by immunostaining in co-exposed groups. In conclusion, the present results conclusively demonstrate the potential modulatory effect of YSE against the Pb-induced toxic effects in different organs of Japanese quails.


Assuntos
Antioxidantes/farmacologia , Nefropatias Diabéticas/tratamento farmacológico , Chumbo/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Yucca/química , 8-Hidroxi-2'-Desoxiguanosina , Animais , Biomarcadores/metabolismo , Glicemia/metabolismo , Catalase/sangue , Coturnix , Desoxiguanosina/análogos & derivados , Desoxiguanosina/sangue , Nefropatias Diabéticas/veterinária , Taxa de Filtração Glomerular , Transportador de Glucose Tipo 2/metabolismo , Glutationa/metabolismo , Homeostase/efeitos dos fármacos , Insulina/sangue , Rim/efeitos dos fármacos , Rim/metabolismo , Malondialdeído/metabolismo , Metalotioneína/metabolismo , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Superóxido Dismutase/sangue , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA