Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 29(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542889

RESUMO

This study describes a simple, cost-effective, and eco-friendly method for synthesizing silver nanoparticles using a rosmarinic acid extract from Perilla frutescens (PFRAE) as the bioreduction agent. The resulting nanoparticles, called PFRAE-AgNPs, were characterized using various analytical techniques. The UV-Vis spectrum confirmed the formation of PFRAE-AgNPs, and the FTIR spectrum indicated the participation of rosmarinic acid in their synthesis and stabilization. The XRD pattern revealed the crystal structure of PFRAE-AgNPs, and the TEM analysis showed their spherical morphology with sizes ranging between 20 and 80 nm. The DLS analysis indicated that PFRAE-AgNPs were monodispersed with an average diameter of 44.0 ± 3.2 nm, and the high negative zeta potential (-19.65 mV) indicated their high stability. In the antibacterial assays, the PFRAE-AgNPs showed potent activity against both Gram-positive (Bacillus subtilis and Staphylococcus aureus) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacterial pathogens, suggesting that they could be used as a potential antibacterial agent in the clinical setting. Moreover, the antioxidant activity of PFRAE-AgNPs against DPPH and ABTS radical scavengers highlights their potential in the treatment of various oxidative stress-related diseases. PFRAE-AgNPs also demonstrated significant anticancer activity against a range of cell lines including human colon cancer (COLO205), human prostate carcinoma (PC-3), human lung adenocarcinoma (A549), and human ovarian cancer (SKOV3) cell lines suggesting their potential in cancer therapy. The nanoparticles may also have potential in drug delivery, as their small size and high stability could enable them to cross biological barriers and deliver drugs to specific target sites. In addition to the aforementioned properties, PFRAE-AgNPs were found to be biocompatible towards normal (CHO) cells, which is a crucial characteristic for their application in cancer therapy and drug delivery systems. Their antibacterial, antioxidant, and anticancer properties make them promising candidates for the development of new therapeutic agents. Furthermore, their small size, high stability, and biocompatibility could enable them to be used in drug delivery systems to enhance drug efficacy and reduce side effects.


Assuntos
Nanopartículas Metálicas , Neoplasias , Perilla frutescens , Humanos , Antioxidantes/farmacologia , Prata/farmacologia , Prata/química , Ácido Rosmarínico , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química
2.
Sci Rep ; 13(1): 18838, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914791

RESUMO

The green methodologies of nanoparticles with plant extracts have received an increase of interest. Copper oxide nanoparticles (CuO NPs) have been utilized in a many of applications in the last few decades. The current study presents the synthesis of CuO NPs with aqueous extract of Morinda citrifolia as a stabilizing agent. The leaf extract of Morinda citrifolia was mixed with a solution of copper sulphate (CuSO4·5H2O) and sodium hydroxide as a catalyst. UV-visible spectroscopy, FTIR, XRD, SEM, TEM, and EDAX analysis were performed to study the synthesized CuO NPs. Particle size distribution of the synthesized CuO NPs have been measured with dynamic light scattering. The CuO NPs synthesized were highly stable, sphere-like, and have size of particles from 20 to 50 nm. Furthermore, as-formed CuO NPs shown strong antibacterial activity against the Gram-positive bacteria (Bacillus subtilis, and Staphylococcus aureus), and Gram-negative bacteria (Escherichia coli). CuO NPs revealed a similar trend was analysed for antifungal activity. The zone of inhibition for the fungi evaluated for Aspergillus flavus (13.0 ± 1.1), Aspergillus niger (14.3 ± 0.7), and Penicillium frequentans (16.8 ± 1.4). According to the results of this investigation, green synthesized CuO NPs with Morinda citrifolia leaf extract may be used in biomedicine as a replacement agent for biological applications.


Assuntos
Nanopartículas Metálicas , Morinda , Nanopartículas , Antifúngicos/farmacologia , Cobre/química , Morinda/química , Nanopartículas Metálicas/química , Antibacterianos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Óxidos , Testes de Sensibilidade Microbiana , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Molecules ; 25(21)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33113894

RESUMO

In this work, we present an ecofriendly, non-hazardous, green synthesis of zinc oxide nanoparticles (ZnO NPs) by leaf extract of Crotalaria verrucosa (C. verrucosa). Total phenolic content, total flavonoid and total protein contents of C. verrucosa were determined. Further, synthesized ZnO NPs was characterized by UV-visible spectroscopy (UV-vis), X-ray diffractometer (XRD), Fourier transform infra-red (FTIR) Spectra, transmission electron microscope (TEM), and Dynamic light scattering (DLS) analysis. UV-vis shows peak at 375 nm which is unique to ZnO NPs. XRD analysis demonstrates the hexagonal phase structures of ZnO NPs. FTIR spectra demonstrates the molecules and bondings associated with the synthesized ZnO NPs and assures the role of phytochemical compounds of C. verrucosa in reduction and capping of ZnO NPs. TEM image exhibits that the prepared ZnO NPs is hexagonal shaped and in size ranged between 16 to 38 nm which is confirmed by DLS. Thermo-gravimetric analysis (TGA) was performed to determine the thermal stability of biosynthesized nanoparticles during calcination. The prepared ZnO NPs showed significant antibacterial potentiality against Gram-positive (S. aureus) and Gram-negative (Proteus vulgaris, Klebsiella pneumoniae, and Escherichia coli) pathogenic bacteria and SEM image shows the generalized mechanism of action in bacterial cell after NPs internalization. In addition, NPs are also found to be effective against the studied cancer cell lines for which cytotoxicity was assessed using MTT assay and results demonstrate highest growth of inhibition at the concentration of 100 µg/mL with IC50 value at 7.07 µg/mL for HeLa and 6.30 µg/mL for DU145 cell lines, in contrast to positive control (C. verrucosa leaf extract) with IC50 of 22.30 µg/mL on HeLa cells and 15.72 µg/mL on DU145 cells. Also, DAPI staining was performed in order to determine the effect on nuclear material due to ZnO NPs treatment in the studied cell lines taking leaf extract as positive control and untreated negative control for comparison. Cell migration assay was evaluated to determine the direct influence of NPs on metastasis that is potential suppression capacity of NPs to tumor cell migration. Outcome of the synthesized ZnO NPs using C. verrucosa shows antimicrobial activity against studied microbes, also cytotoxicity, apoptotic mediated DNA damage and antiproliferative potentiality in the studied carcinoma cells and hence, can be further used in biomedical, pharmaceutical and food processing industries as an effective antimicrobial and anti-cancerous agent.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Crotalaria/química , Nanopartículas/química , Folhas de Planta/química , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Antibacterianos/síntese química , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Química Verde , Células HeLa , Humanos , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Óxido de Zinco/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA