RESUMO
Purpose: Glaucoma is a complex degenerative optic neuropathy characterized by loss of retinal ganglion cells (RGCs) leading to irreversible vision loss and blindness. Solanum nigrum has been used for decades in traditional medicine system. However, no extensive studies were reported on its antiglaucoma properties. Therefore, this study was designed to investigate the neuroprotective effects of S. nigrum extract on RGC against glaucoma rat model. Methods: High performance liquid chromatography and liquid chromatography tandem mass spectrometry was used to analyze the phytochemical profile of aqueous extract of S. nigrum (AESN). In vitro, {3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide} (MTT) and H2DCFDA assays were used to determine cell viability and reactive oxygen species (ROS) production in Statens Seruminstitut Rabbit Cornea cells. In vivo, AESN was orally administered to carbomer-induced rats for 4 weeks. Intraocular pressure, antioxidant levels, and electrolytes were determined. Histopathological and immunohistochemical analysis was carried out to evaluate the neurodegeneration of RGC. Results: MTT assay showed AESN exhibited greater cell viability and minimal ROS production at 10 µg/mL. Slit lamp and funduscopy confirmed glaucomatous changes in carbomer-induced rats. Administration of AESN showed minimal peripheral corneal vascularization and restored histopathological alterations such as minimal loss of corneal epithelium and moderate narrowing of the iridocorneal angle. Immunohistochemistry analysis showed increased expression of positive BRN3A cells and decreased matrix metalloproteinase (MMP)-9 activation in retina and cornea, whereas western blot analysis revealed downregulation of extracellular matrix proteins (COL-1 and MMP-9) in AESN-treated rats compared with the diseased group rats. Conclusions: AESN protects RGC loss through remodeling of MMPs and, therefore, can be used for the development of novel neurotherapeutics for the treatment of glaucoma.
Assuntos
Sobrevivência Celular , Modelos Animais de Doenças , Matriz Extracelular , Glaucoma , Fármacos Neuroprotetores , Extratos Vegetais , Espécies Reativas de Oxigênio , Células Ganglionares da Retina , Solanum nigrum , Animais , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Glaucoma/tratamento farmacológico , Glaucoma/patologia , Glaucoma/metabolismo , Ratos , Solanum nigrum/química , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Masculino , Coelhos , Pressão Intraocular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Ratos Sprague-DawleyRESUMO
Fenugreek seeds are used in numerous marketed herbal formulations with therapeutic benefits. Some of its bioactive components such as 4-hydroxyisoleucine, trigonelline, raffinose, and pinitol are reported to possess potential therapeutic activities, such as antibacterial, antidiabetic, stomach stimulant, and anti-invasive, against hyperandrogenism and other allied diseases, including polycystic ovary syndrome. A fully validated, selective, and sensitive bioanalytical method for the simultaneous rapid quantification of the aforementioned bioactive components has been developed using hyphenated liquid chromatography electrospray tandem mass spectrometry. The analytes were separated within 5 min using gradient elution in a C18 column at a flow rate of 0.5 ml/min. Plasma protein precipitation technique was employed to isolate the analytes from the samples. Oral pharmacokinetic profile of the four bioactive components in Sprague-Dawley rats was further evaluated using noncompartmental analysis using Phoenix WinNonlin software.