Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ageing Res Rev ; 69: 101346, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33915266

RESUMO

Alzheimer's disease (AD) is characterized by non-linear, genetic-driven pathophysiological dynamics with high heterogeneity in biological alterations and disease spatial-temporal progression. Human in-vivo and post-mortem studies point out a failure of multi-level biological networks underlying AD pathophysiology, including proteostasis (amyloid-ß and tau), synaptic homeostasis, inflammatory and immune responses, lipid and energy metabolism, oxidative stress. Therefore, a holistic, systems-level approach is needed to fully capture AD multi-faceted pathophysiology. Omics sciences - genomics, epigenomics, transcriptomics, proteomics, metabolomics, lipidomics - embedded in the systems biology (SB) theoretical and computational framework can generate explainable readouts describing the entire biological continuum of a disease. Such path in Neurology is encouraged by the promising results of omics sciences and SB approaches in Oncology, where stage-driven pathway-based therapies have been developed in line with the precision medicine paradigm. Multi-omics data integrated in SB network approaches will help detect and chart AD upstream pathomechanistic alterations and downstream molecular effects occurring in preclinical stages. Finally, integrating omics and neuroimaging data - i.e., neuroimaging-omics - will identify multi-dimensional biological signatures essential to track the clinical-biological trajectories, at the subpopulation or even individual level.


Assuntos
Doença de Alzheimer , Biologia de Sistemas , Doença de Alzheimer/genética , Genômica , Humanos , Metabolômica , Medicina de Precisão
2.
Curr Alzheimer Res ; 15(7): 628-636, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29359669

RESUMO

BACKGROUND: Therapeutic approaches targeting amyloid ß42 (Aß42) oligomers may represent a promising neuroprotective strategy for the prevention and treatment of Alzheimer's disease (AD). OBJECTIVE: In this study we evaluated the ability of bromelain, a plant cysteine protease derived from pineapple stems, to interact with synthetic Aß42 monomers and oligomers. We also examined the ability of bromelain to interfere in vitro with synthetic Aß42 aggregates in the cerebrospinal fluid (CSF) of Alzheimer's disease as well as of control patients affected by other neurological diseases. METHOD: Both synthetic monomers and aggregates of Aß42 were incubated in CSF with varying concentrations of bromelain. The effects of digestion were evaluated by Western Blot analysis using the specific monoclonal antibody 4G8 to identify the patterns of residual content of Aß42. We further used rat primary cortical culture neurons (CN) to examine the cytotoxic action of this natural compound. RESULTS: We found that bromelain successfully degraded Aß42 monomers and low and high molecular weight oligomers. Indeed, when bromelain preparations of 3 and 6 mU were added to the CSF, the residual amount of Aß42 monomers and oligomers were significantly reduced when compared to the same standard Aß42 preparations incubated in CSF without bromelain. Moreover, bromelain incubations of 0.1, 0.5, and 1 mU/ml were not toxic to CN, as compared to vehicle treated cells. CONCLUSION: Overall, these results represent an important insight into the action of bromelain on Aß42 oligomers, suggesting its potential use in the therapy of AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Bromelaínas/farmacologia , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/metabolismo , Proteólise/efeitos dos fármacos , Doença de Alzheimer/metabolismo , Animais , Biomarcadores/líquido cefalorraquidiano , Sobrevivência Celular/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Líquido Cefalorraquidiano/efeitos dos fármacos , Líquido Cefalorraquidiano/metabolismo , Humanos , Peso Molecular , Cultura Primária de Células , Agregados Proteicos/efeitos dos fármacos , Agregação Patológica de Proteínas/tratamento farmacológico , Estabilidade Proteica/efeitos dos fármacos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA