Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 314(1): L93-L106, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28882814

RESUMO

We recently demonstrated that blue light induces vasorelaxation in the systemic mouse circulation, a phenomenon mediated by the nonvisual G protein-coupled receptor melanopsin (Opsin 4; Opn4). Here we tested the hypothesis that nonvisual opsins mediate photorelaxation in the pulmonary circulation. We discovered Opsin 3 (Opn3), Opn4, and G protein-coupled receptor kinase 2 (GRK2) in rat pulmonary arteries (PAs) and in pulmonary arterial smooth muscle cells (PASMCs), where the opsins interact directly with GRK2, as demonstrated with a proximity ligation assay. Light elicited an intensity-dependent relaxation of PAs preconstricted with phenylephrine (PE), with a maximum response between 400 and 460 nm (blue light). Wavelength-specific photorelaxation was attenuated in PAs from Opn4-/- mice and further reduced following shRNA-mediated knockdown of Opn3. Inhibition of GRK2 amplified the response and prevented physiological desensitization to repeated light exposure. Blue light also prevented PE-induced constriction in isolated PAs, decreased basal tone, ablated PE-induced single-cell contraction of PASMCs, and reversed PE-induced depolarization in PASMCs when GRK2 was inhibited. The photorelaxation response was modulated by soluble guanylyl cyclase but not by protein kinase G or nitric oxide. Most importantly, blue light induced significant vasorelaxation of PAs from rats with chronic pulmonary hypertension and effectively lowered pulmonary arterial pressure in isolated intact perfused rat lungs subjected to acute hypoxia. These findings show that functional Opn3 and Opn4 in PAs represent an endogenous "optogenetic system" that mediates photorelaxation in the pulmonary vasculature. Phototherapy in conjunction with GRK2 inhibition could therefore provide an alternative treatment strategy for pulmonary vasoconstrictive disorders.


Assuntos
Quinase 2 de Receptor Acoplado a Proteína G/antagonistas & inibidores , Hipertensão Pulmonar/radioterapia , Fototerapia , Artéria Pulmonar/efeitos da radiação , Opsinas de Bastonetes/fisiologia , Vasodilatação/efeitos da radiação , Animais , Células Cultivadas , Quinase 2 de Receptor Acoplado a Proteína G/genética , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/patologia , Hipóxia/complicações , Luz , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efeitos da radiação , Óxido Nítrico/metabolismo , Artéria Pulmonar/citologia , Artéria Pulmonar/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Guanilil Ciclase Solúvel/genética , Guanilil Ciclase Solúvel/metabolismo , Vasodilatação/fisiologia
2.
Anesth Analg ; 123(3): 652-8, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27537757

RESUMO

BACKGROUND: In sickle cell disease (SCD), hemolysis results in the release and activation of arginase, an enzyme that reciprocally regulates nitric oxide (NO) synthase activity and thus, NO production. Simply supplementing the common substrate L-arginine, however, fails to improve NO bioavailability. In this study, we tested the hypothesis that arginase inhibition would improve NO bioavailability and thereby attenuate systemic and pulmonary vascular endothelial dysfunction in transgenic mice with SCD. METHODS: We studied 5-month-old transgenic sickle cell (SC) mice and age matched wild-type (WT) controls. SC mice were treated with the arginase inhibitor, 2(S)-amino-6-boronohexanoic acid (ABH; approximately 400 µg/d) for 4 weeks or left untreated. RESULTS: Vascular arginase activity was significantly higher at baseline in untreated SC mice compared to WT controls (SC versus WT, 346 ± 69.3 vs 69 ± 17.3 pmol urea/mg protein/minute; P = 0.0043; n = 4-5 animals per group). Treatment with ABH may significantly decrease arginase activity to levels near WT controls (SC + ABH 125.2 ± 17.3 pmol urea/mg protein/minute; P = 0.0213). Aortic strips from untreated SC mice showed decreased NO and increased reactive oxygen species (ROS) production (NO: fluorescence rate 0.76 ± 0.14 vs 1.34 ± 0.17 RFU/s; P = 0.0005 and ROS: fluorescence rate 3.96 ± 1.70 vs 1.63 ± 1.20 RFU/s, P = 0.0039; n = 3- animals per group). SC animals treated with ABH for 4 weeks demonstrated NO (fluorescence rate: 1.16 ± 0.16) and ROS (fluorescence rate: 2.02 ± 0.45) levels comparable with age-matched WT controls (n = 3- animals per group). The maximal endothelial-dependent vasorelaxation response to acetylcholine was impaired in aortic rings from SC mice compared with WT (57.7% ± 8.4% vs 80.3% ± 11.0%; P = 0.02; n = 6 animals per group). The endothelial-independent response was not different between groups. In SC mice, the right ventricular cardiac output index and end-systolic elastance were similar (4.60 ± 0.51 vs 2.9 ± 0.85 mL/min/100 g and 0.89 ± 0.48 vs 0.58 ± 0.11 mm Hg/µL), whereas the pulmonary vascular resistance index and right ventricular end-systolic pressure were greater (2.9 ± 0.28 vs 5.5 ± 2.0 mm Hg × min/µL/100 g and 18.9 ± 1.1 vs 23.1 ± 4.0 mm Hg; n = 8 animals per group). Pulse wave velocity (a measure of arterial stiffness) was greater in SC mice compared with WT (3.74 ± 0.54 vs 3.25 ± 0.21 m/s; n = 20 animals per group), arginase inhibition for 4 weeks significantly reduced the vascular SC phenotype to one similar to WT animals (P = 0.0009). CONCLUSIONS: Arginase inhibition improves NO bioavailability and thereby attenuates systemic and pulmonary vascular endothelial dysfunction in transgenic mice with SCD. Therefore, arginase is a potential therapeutic target in the treatment of cardiovascular dysfunction in SCD.


Assuntos
Anemia Falciforme/enzimologia , Arginase/antagonistas & inibidores , Endotélio Vascular/enzimologia , Hipertensão Pulmonar/enzimologia , Rigidez Vascular/fisiologia , Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/fisiopatologia , Animais , Arginase/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiopatologia , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Análise de Onda de Pulso/métodos , Rigidez Vascular/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia , Vasodilatadores/farmacologia , Vasodilatadores/uso terapêutico
3.
J Surg Res ; 178(2): 593-600, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22771242

RESUMO

OBJECTIVES: Ischemia/reperfusion injury (IRI) is a common complication of lung transplantation (LTx). Hydrogen sulfide (H(2)S) is a novel agent previously shown to slow metabolism and scavenge reactive oxygen species, potentially mitigating IRI. We hypothesized that pretreatment with inhaled H(2)S would improve graft function in an ex vivo model of LTx. METHODS: Rabbits (n = 10) were ventilated for 2 h prior to heart-lung bloc procurement. The treatment group (n = 5) inhaled room air (21% O(2)) supplemented with 150 ppm H(2)S while the control group (n = 5) inhaled room air alone. Both groups were gradually cooled to 34°C. All heart-lung blocs were then recovered and cold-stored in low-potassium dextran solution for 18 h. Following storage, the blocs were reperfused with donor rabbit blood in an ex vivo apparatus. Serial clinical parameters were assessed and serial tissue biochemistry was examined. RESULTS: Prior to heart-lung bloc procurement, rabbits pretreated with H(2)S exhibited similar oxygenation (P = 0.1), ventilation (P = 0.7), and heart rate (P = 0.5); however, treated rabbits exhibited consistently higher mean arterial blood pressures (P = 0.01). During reperfusion, lungs pretreated with H(2)S had better oxygenation (P < 0.01) and ventilation (P = 0.02), as well as lower pulmonary artery pressures (P < 0.01). Reactive oxygen species levels were lower in treated lungs during reperfusion (P = 0.01). Additionally, prior to reperfusion, treated lungs demonstrated more preserved mitochondrial cytochrome c oxidase activity (P = 0.01). CONCLUSIONS: To our knowledge, this study represents the first reported therapeutic use of inhaled H(2)S in an experimental model of LTx. After prolonged ischemia, lungs pretreated with inhaled H(2)S exhibited improved graft function during reperfusion. Donor pretreatment with inhaled H(2)S represents a potentially novel adjunct to conventional preservation techniques and merits further exploration.


Assuntos
Sulfeto de Hidrogênio/administração & dosagem , Sulfeto de Hidrogênio/farmacologia , Transplante de Pulmão , Administração por Inalação , Animais , AMP Cíclico/análise , Complexo IV da Cadeia de Transporte de Elétrons/fisiologia , Pulmão/irrigação sanguínea , Masculino , Modelos Animais , Coelhos , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/prevenção & controle
4.
J Physiol ; 589(Pt 8): 2093-103, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21486801

RESUMO

Elevated low-density lipoproteins (LDLs) are associated with vascular dysfunction evident in the cutaneous microvasculature. We hypothesized that uncoupled endothelial nitric oxide synthase (NOS3) through upregulated arginase contributes to cutaneous microvascular dysfunction in hyperocholesterolaemic (HC) humans and that a statin intervention would decrease arginase activity. Five microdialysis fibres were placed in the skin of nine normocholesterolaemic (NC: LDL level 95±4 mg dl⁻¹) and nine hypercholesterolaemic (HC: LDL: 177±6 mg dl⁻¹) men and women before and after 3 months of systemic atrovastatin. Sites served as control, NOS inhibited, arginase inhibited, L-arginine supplemented and arginase inhibited plus L-arginine supplemented. Skin blood flow was measured while local skin heating (42°C) induced NO-dependent vasodilatation. L-NAME was infused after the established plateau in all sites to quantify NO-dependent vasodilatation. Data were normalized to maximum cutaneous vascular conductance (CVC(max)). Skin samples were obtained to measure total arginase activity and arginase I and arginase II protein. Vasodilatation was reduced in hyperocholesterolaemic subjects (HC: 76±2 vs. NC: 94±3%CVC(max), P < 0.001) as was NO-dependent vasodilatation (HC: 43±5 vs. NC: 62±4%CVC(max), P < 0.001). The plateau and NO-dependent vasodilatation were augmented in HC with arginase inhibition (92±2, 67±2%CVC(max), P < 0.001), L-arginine (93±2, 71±5%CVC(max), P < 0.001) and combined treatments (94±4, 65±5%CVC(max), P < 0.001) but not in NC. After statin intervention (LDL: 98±5 mg dl⁻¹) there was no longer a difference between control sites (88±4, 61±5%CVC(max)) and localized microdialysis treatment sites (all P > 0.05). Arginase activity and protein were increased in HC skin (P < 0.05 vs. NC) and activity decreased with atrovastatin treatment (P < 0.05). Reduced NOS3 substrate availability through upregulated arginase contributes to cutaneous microvascular dysfunction in hyperocholesterolaemic humans, which is corrected with atorvastatin therapy.


Assuntos
Arginase/metabolismo , Ácidos Heptanoicos/administração & dosagem , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Hipercolesterolemia/tratamento farmacológico , Microcirculação/efeitos dos fármacos , Pirróis/administração & dosagem , Pele/irrigação sanguínea , Administração Oral , Adulto , Análise de Variância , Arginase/antagonistas & inibidores , Arginina/metabolismo , Atorvastatina , Biomarcadores/sangue , Biópsia , Velocidade do Fluxo Sanguíneo , Colesterol/sangue , Regulação para Baixo , Inibidores Enzimáticos/administração & dosagem , Feminino , Humanos , Hipercolesterolemia/sangue , Hipercolesterolemia/enzimologia , Hipercolesterolemia/fisiopatologia , Lipoproteínas LDL/sangue , Masculino , Microdiálise , Pessoa de Meia-Idade , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/metabolismo , Pennsylvania , Fluxo Sanguíneo Regional , Fatores de Tempo , Resultado do Tratamento , Triglicerídeos/sangue
5.
Endothelium ; 9(3): 191-203, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12380644

RESUMO

NADPH oxidase is a major enzymatic source of oxygen free radicals in stimulated endothelial cells (ECs). The ortho-methoxy-substituted catechol, apocynin (4-hydroxy-3-methoxyacetophenone), isolated from the traditional medicinal plant Picrorhiza kurroa, inhibits the release of superoxide anion (O2*-) by this enzyme. The compound acts by blocking the assembly of a functional NADPH oxidase complex. The underlying chemistry of this inhibitory activity, and its physiological significance to EC proliferation, have been investigated. A critical event is the reaction of ortho-methoxy-substituted catechols with reactive oxygen species (ROS) and peroxidase. Analysis of this reaction reveals that apocynin is converted to a symmetrical dimer through the formation of a 5,5' carbon-carbon bond. Both reduced glutathione and L-cysteine inhibit this dimerization process. Catechols without the ortho-methoxy-substituted group do not undergo this chemical reaction. Superoxide production by an endothelial cell-free system incubated with apocynin was nearly completely inhibited after a lagtime for inhibition of ca. 2 min. Conversely, O2*- production was nearly completely inhibited, without a lagtime, by incubation with the dimeric form of apocynin. The apocynin dimer undergoes a two-electron transfer reaction with standard redox potentials of -0.75 and -1.34 V as determined by cyclic voltammetry. Inhibition of endothelial NADPH oxidase by apocynin caused a dose-dependent inhibition of cell proliferation. These findings identify a metabolite of an ortho-methoxy-substituted catechol, which may be the active compound formed within stimulated ECs that prevents NADPH oxidase complex assembly and activation.


Assuntos
Acetofenonas/farmacologia , Catecóis/farmacologia , Endotélio Vascular/enzimologia , Inibidores Enzimáticos/farmacologia , NADPH Oxidases/metabolismo , Acetofenonas/química , Catecóis/química , Cisteína/farmacologia , Dimerização , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/crescimento & desenvolvimento , Glutationa/farmacologia , Peróxido de Hidrogênio/metabolismo , Modelos Químicos , NADH NADPH Oxirredutases/antagonistas & inibidores , NADH NADPH Oxirredutases/sangue , Oxirredução , Peroxidase/metabolismo , Espécies Reativas de Oxigênio/análise , Superóxidos/metabolismo , Ubiquinona/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA