Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Redox Biol ; 68: 102962, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38029455

RESUMO

Pancreatic ductal adenocarcinoma (PDA) cells reprogram both mitochondrial and lysosomal functions to support growth. At the same time, this causes significant dishomeostasis of free radicals. While this is compensated by the upregulation of detoxification mechanisms, it also represents a potential vulnerability. Here we demonstrate that PDA cells are sensitive to the inhibition of the mevalonate pathway (MVP), which supports the biosynthesis of critical antioxidant intermediates and protect from ferroptosis. We attacked the susceptibility of PDA cells to ferroptotic death with selenorganic compounds, including dibenzyl diselenide (DBDS) that exhibits potent pro-oxidant properties and inhibits tumor growth in vitro and in vivo. DBDS treatment induces the mobilization of iron from mitochondria enabling uncontrolled lipid peroxidation. Finally, we showed that DBDS and statins act synergistically to promote ferroptosis and provide evidence that combined treatment is a viable strategy to combat PDA.


Assuntos
Ferroptose , Neoplasias Pancreáticas , Selênio , Humanos , Pâncreas , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Peroxidação de Lipídeos , Neoplasias Pancreáticas
2.
Toxicol Res ; 39(1): 105-114, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36721677

RESUMO

Phenylselenenylzinc chloride (PhSeZnCl) is an air-stable selenolate, easily synthesizable through oxidative insertion of elemental zinc into the Se-halogen bond of the commercially available phenylselenyl chloride. PhSeZnCl was shown to possess a marked GPx-like activity both in NMR and in vitro tests, and to effectively react with cellular thiols, and was supposed for a potential use in the chemotherapy of drug-resistant cancers. However, activity of PhSeZnCl in hepatic cells has never been tested before now. In this in vitro approach, we evaluated the cytotoxic, genotoxic, and apoptotic activities, as well as the effects on cell cycle of PhSeZnCl in two preclinical hepatic models, namely HepG2 and HepaRG cells. Results showed that cell viability of HepG2 and HepaRG cells decreased in a dose-dependent manner, with a more marked effect in HepG2 tumour cells. Moreover, treatment with 50 µg/mL PhSeZnCl caused an increase of primary DNA damage (4 h) and a statistically significant increase of HepG2 cells arrested in G2/M phase. In addition, it altered mitochondrial membrane potential and induced chromosomal DNA fragmentation (24 h). In HepaRG cells, PhSeZnCl was able to determine a cell cycle-independent induction of apoptosis. Particularly, 50 µg/mL induced mitochondrial membrane depolarization after 24 h and apoptosis after 4 h treatment. Futhermore, all PhSeZnCl concentrations tested determined a significant increase of apoptotic cells after 24 h. Apoptosis was also highlighted by the detection of active Caspase-3 by Western Blot analysis after 24 h exposure. In conclusion, this first toxicological assessment provides new insights into the biological activity of PhSeZnCl in preclinical hepatic models that will be useful in future safety assessment investigation of this compound as a potential pharmaceutical. Supplementary Information: The online version contains supplementary material available at 10.1007/s43188-022-00148-y.

3.
Int J Mol Sci ; 22(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34208928

RESUMO

The development of new antiviral drugs against SARS-CoV-2 is a valuable long-term strategy to protect the global population from the COVID-19 pandemic complementary to the vaccination. Considering this, the viral main protease (Mpro) is among the most promising molecular targets in light of its importance during the viral replication cycle. The natural flavonoid quercetin 1 has been recently reported to be a potent Mpro inhibitor in vitro, and we explored the effect produced by the introduction of organoselenium functionalities in this scaffold. In particular, we report here a new synthetic method to prepare previously inaccessible C-8 seleno-quercetin derivatives. By screening a small library of flavonols and flavone derivatives, we observed that some compounds inhibit the protease activity in vitro. For the first time, we demonstrate that quercetin (1) and 8-(p-tolylselenyl)quercetin (2d) block SARS-CoV-2 replication in infected cells at non-toxic concentrations, with an IC50 of 192 µM and 8 µM, respectively. Based on docking experiments driven by experimental evidence, we propose a non-covalent mechanism for Mpro inhibition in which a hydrogen bond between the selenium atom and Gln189 residue in the catalytic pocket could explain the higher Mpro activity of 2d and, as a result, its better antiviral profile.


Assuntos
Antivirais/química , Quercetina/química , SARS-CoV-2/metabolismo , Selênio/química , Proteínas da Matriz Viral/antagonistas & inibidores , Animais , Antivirais/metabolismo , Antivirais/farmacologia , Sítios de Ligação , COVID-19/patologia , COVID-19/virologia , Domínio Catalítico , Chlorocebus aethiops , Humanos , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Inibidores de Proteases/farmacologia , Quercetina/metabolismo , Quercetina/farmacologia , SARS-CoV-2/isolamento & purificação , Selênio/metabolismo , Células Vero , Proteínas da Matriz Viral/metabolismo , Replicação Viral/efeitos dos fármacos
4.
Molecules ; 26(14)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34299505

RESUMO

Ebselen is the leader of selenorganic compounds, and starting from its identification as mimetic of the key antioxidant enzyme glutathione peroxidase, several papers have appeared in literature claiming its biological activities. It was the subject of several clinical trials and it is currently in clinical evaluation for the treatment of COVID-19 patients. Given our interest in the synthesis and pharmacological evaluation of selenorganic derivatives with this review, we aimed to collect all the papers focused on the biological evaluation of ebselen and its close analogues, covering the timeline between 2016 and most of 2021. Our analysis evidences that, even if it lacks specificity when tested in vitro, being able to bind to every reactive cysteine, it proved to be always well tolerated in vivo, exerting no sign of toxicity whatever the administered doses. Besides, looking at the literature, we realized that no review article dealing with the synthetic approaches for the construction of the benzo[d][1,2]-selenazol-3(2H)-one scaffold is available; thus, a section of the present review article is completely devoted to this specific topic.


Assuntos
Azóis/química , Azóis/síntese química , Azóis/farmacologia , Compostos Organosselênicos/química , Compostos Organosselênicos/síntese química , Compostos Organosselênicos/farmacologia , Animais , Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Antivirais/farmacologia , Biomimética/métodos , Inibidores de Ciclo-Oxigenase/farmacologia , Glutationa Peroxidase/metabolismo , Glutationa Peroxidase/farmacologia , Humanos , Isoindóis , Estrutura Molecular , Fármacos Neuroprotetores/farmacologia , Selênio/química , Selenoproteínas/síntese química , Selenoproteínas/farmacologia
5.
Med Chem ; 17(6): 667-676, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32242787

RESUMO

BACKGROUND: Quinoline derivatives have been attracted much attention in drug discovery, and synthetic derivatives of these scaffolds present a range of pharmacological activities. Therefore, organoselenium compounds are valuable scaffolds in organic synthesis because of their pharmacological activities and their use as versatile building blocks for regio-, chemo-and stereoselective reactions. Thus, the synthesis of selenium-containing quinolines has great significance, and their applicability range from simple antioxidant agents, to selective DNA-binding and photocleaving agents. OBJECTIVE: In the present study, we describe the synthesis and antioxidant activity in vitro of new 7- chloro-N(arylselanyl)quinolin-4-amines 5 by the reaction of 4,7-dichloroquinoline 4 with (arylselanyl)- amines 3. METHODS: For the synthesis of 7-chloro-N(arylselanyl)quinolin-4-amines 5, we performed the reaction of (arylselanyl)-amines 3 with 4,7-dichloroquinoline 4 in the presence of Et3N at 120 °C in a sealed tube. The antioxidant activities of the compounds 5 were evaluated by the following in vitro assays: 2,2- diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, 2,2-azinobis-3- ethylbenzothiazoline-6-sulfonic acid (ABTS), ferric ion reducing antioxidant power (FRAP), nitric oxide (NO) scavenging and superoxide dismutase-like activity (SOD-Like). RESULTS: 7-Chloro-N(arylselanyl)quinolin-4-amines 5a-d have been synthesized in yields ranging from 68% to 82% by the reaction of 4,7-dichloroquinoline 4 with arylselanyl-amines 3a-d using Et3N as a base, at 120 °C, in a sealed tube for 24 hours and tolerates different substituents, such as -OMe and -Cl, in the arylselanyl moiety. The obtained compounds 5a-d presented significant results concerning the antioxidant potential, which had an effect in the tests of inhibition of radical's DPPH, ABTS+ and NO, as well as in the analysis that evaluates the capacity (FRAP) and in the superoxide dismutase-like activity assay (SOD-Like). It is worth mentioning that 7-chloro- N(arylselanyl)quinolin-4-amine 5b presented excellent results, demonstrating a better antioxidant capacity when compared to the others. CONCLUSION: According to the obtained results, 7-chloro-N(arylselanyl)quinolin-4-amines 5 were synthesized in good yields by the reaction of 4,7-dichloroquinoline with arylselanyl-amines and tolerated different substituents in the arylselanyl moiety. The tested compounds presented significant antioxidant potential in the tests of inhibition of DPPH, ABTS+, and NO radicals, as well as in the FRAP and superoxide dismutase-like activity assays (SOD-Like).


Assuntos
Antioxidantes/síntese química , Antioxidantes/farmacologia , Quinolinas/síntese química , Quinolinas/farmacologia , Selênio/química , Aminas/química , Antioxidantes/química , Benzotiazóis/química , Técnicas de Química Sintética , Óxido Nítrico/química , Quinolinas/química , Ácidos Sulfônicos/química
6.
Molecules ; 25(9)2020 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-32357472

RESUMO

In this work, we focused our attention on seleno-Michael type reactions. These were performed using zinc-selenolates generated in situ from diphenyl diselenide 1, 1,2-bis(3-phenylpropyl)diselenide 30, and protected selenocystine 31 via an efficient biphasic Zn/HCl-based reducing system. Alkenes with a variety of electron-withdrawing groups were investigated in order to gauge the scope and limitations of the process. Results demonstrated that the addition to acyclic α,ß-unsaturated ketones, aldehydes, esters amides, and acids was effectively achieved and that alkyl substituents at the reactive ß-centre can be accommodated. Similarly, cyclic enones undergo efficient Se-addition and the corresponding adducts were isolated in moderate to good yield. Vinyl sulfones, α,ß-unsaturated nitriles, and chalcones are not compatible with these reaction conditions. A recycling experiment demonstrated that the unreacted Zn/HCl reducing system can be effectively reused for seven reaction cycles (91% conversion yield at the 7° recycling rounds).


Assuntos
Derivados de Benzeno/química , Compostos Organosselênicos/química , Selênio/química , Zinco/química , Aldeídos/química , Alcenos/química , Amidas/química , Catálise , Cistina/análogos & derivados , Cistina/química , Ésteres , Cetonas/química , Oxirredução , Sulfonas/química
7.
J Agric Food Chem ; 68(14): 4075-4097, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32181658

RESUMO

Selenium (Se) is an important micronutrient for living organisms, since it is involved in several physiological and metabolic processes. Se intake in humans is often low and very seldom excessive, and its bioavailability depends also on its chemical form, with organic Se as the most available after ingestion. The main dietary source of Se for humans is represented by plants, since many species are able to metabolize and accumulate organic Se in edible parts to be consumed directly (leaves, flowers, fruits, seeds, and sprouts) or after processing (oil, wine, etc.). Countless studies have recently investigated the Se biofortification of plants to produce Se-enriched foods and elicit the production of secondary metabolites, which may benefit human health when incorporated into the diet. Moreover, feeding animals Se-rich diets may provide Se-enriched meat. This work reviews the most recent literature on the nutraceutical profile of Se-enriched foods from plant and animal sources.


Assuntos
Selênio/química , Selênio/metabolismo , Oligoelementos/química , Oligoelementos/metabolismo , Animais , Biofortificação , Disponibilidade Biológica , Produtos Agrícolas/química , Produtos Agrícolas/metabolismo , Dieta , Suplementos Nutricionais , Ingestão de Alimentos , Alimentos Fortificados , Humanos , Carne , Estado Nutricional , Estruturas Vegetais/química
8.
Molecules ; 22(12)2017 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-29207462

RESUMO

In 2017, the 200th anniversary of the discovery of selenium was celebrated. In 1817, the Swedish chemists, Berzelius and Gahn, on roasting 200 kg of sulfur from a pyrite from the Falun mine, obtained about 3 g of a precipitate that they first wrongly identified as tellurium. Berzelius doubted this result and repeated the analysis some months later realizing that a new element was in his hands and he named this element Selenium (Greek: Selene, moon) in consideration of its resemblance to Tellurium (Latin: Tellus, earth). Several events were organized in the year for this special celebration and this Special Issue would like to be an additional contribution to the success of a research that, especially during the last decades, rapidly grew in different fields: synthesis, medicinal chemistry, biology, material, and environment. These studies are strongly characterized by multi- and interdisciplinary connections, and, for this reason, we collected here contributions coming from different areas and disciplines, not exclusively synthetic organic chemistry.


Assuntos
Compostos de Selênio/química , Selênio/química , Catálise , Química Verde/métodos , História do Século XIX , História do Século XX , História do Século XXI , Humanos , Selênio/história , Compostos de Selênio/história
9.
Adv Cancer Res ; 136: 259-302, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29054421

RESUMO

In vitro and in vivo experimental models clearly demonstrate the efficacy of Se compounds as anticancer agents, contingent upon chemical structures and concentrations of test molecules, as well as on the experimental model under investigation that together influence cellular availability of compounds, their molecular dynamics and mechanism of action. The latter includes direct and indirect redox effects on cellular targets by the activation and altered compartmentalization of molecular oxygen, and the interaction with protein thiols and Se proteins. As such, Se compounds interfere with the redox homeostasis and signaling of cancer cells to produce anticancer effects that include alterations in key regulatory elements of energy metabolism and cell cycle checkpoints that ultimately influence differentiation, proliferation, senescence, and death pathways. Cys-containing proteins and Se proteins involved in the response to Se compounds as sensors and transducers of anticancer signals, i.e., the pharmacoproteome of Se compounds, are described and include critical elements in the different phases of cancer onset and progression from initiation and escape of immune surveillance to tumor growth, angiogenesis, and metastasis. The efficacy and mode of action on these compounds vary depending on the inorganic and organic form of Se used as either supplement or pharmacological agent. In this regard, differences in experimental/clinical protocols provide options for either chemoprevention or therapy in different human cancers.


Assuntos
Neoplasias/tratamento farmacológico , Neoplasias/prevenção & controle , Compostos de Selênio/farmacologia , Compostos de Selênio/uso terapêutico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Humanos , Neovascularização Patológica/tratamento farmacológico
10.
Molecules ; 22(2)2017 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-28230754

RESUMO

A simple and efficient protocol to prepare divinyl selenides has been developed by the regio- and stereoselective addition of sodium selenide species to aryl alkynes. The nucleophilic species was generates in situ, from the reaction of elemental selenium with NaBH4, utilizing PEG-400 as the solvent. Several divinyl selenides were obtained in moderate to excellent yields with selectivity for the (Z,Z)-isomer by a one-step procedure that was carried out at 60 °C in short reaction times. The methodology was extended to tellurium, giving the desired divinyl tellurides in good yields. Furthermore, the Fe-catalyzed cross-coupling reaction of bis(3,5-dimethoxystyryl) selenide 3f with (4-methoxyphenyl)magnesium bromide 5 afforded resveratrol trimethyl ether 6 in 57% yield.


Assuntos
Alcinos/química , Selênio/química , Alcinos/síntese química , Catálise , Técnicas de Química Sintética , Compostos Organosselênicos/síntese química , Compostos Organosselênicos/química , Resveratrol , Estilbenos/síntese química , Estilbenos/química , Telúrio/química
11.
Molecules ; 20(6): 10496-510, 2015 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-26060915

RESUMO

The stoichiometric use of hydrogen peroxide in the presence of a selenium-containing catalyst in water is here reported as a new ecofriendly protocol for the synthesis of variously functionalized carboxylic acids and esters. The method affords the desired products in good to excellent yields under very mild conditions starting directly from commercially available aldehydes. Using benzaldehyde as a prototype the gram scale synthesis of benzoic acid is described, in which the aqueous medium and the catalyst could be recycled at last five times while achieving an 87% overall yield.


Assuntos
Aldeídos/química , Oxirredução , Selênio/química , Ácidos Carboxílicos/síntese química , Catálise , Ésteres/síntese química , Química Verde
12.
Nat Prod Commun ; 10(11): 1885-92, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26749817

RESUMO

Selenium is naturally present in soils but it is also produced by pollution from human activities into the environment. Its incorporation into plants affords organoselenium metabolites that, depending on the nature of the molecules and the plant species, can be incorporated into proteins, stored or eliminated by volatilization. The possibility to use the selenium metabolism of some plants as a method for bioremediation and, at the main time, as a source of selenated phytochemicals is here discussed taking into consideration the growing interest in organic selenium derivatives as new potential therapeutic agents.


Assuntos
Compostos Organosselênicos/química , Compostos Fitoquímicos/química , Plantas/química , Animais , Biodegradação Ambiental , Tratamento Farmacológico , Humanos , Compostos Organosselênicos/metabolismo , Compostos Organosselênicos/farmacologia , Compostos Fitoquímicos/metabolismo , Compostos Fitoquímicos/farmacologia
14.
Nat Prod Commun ; 4(12): 1751-4, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20120119

RESUMO

The essential oil composition of Commiphora erythraea (Ehrenb) Engl. is reported for the first time. The oil is rich in sesquiterpenes, particularly furanosesquiterpenes (50.3%). GC-MS analysis of the oil permitted differentiation between C. erythraea and C. kataf, two often confused species.


Assuntos
Commiphora/química , Óleos Voláteis/química , Cromatografia Gasosa-Espectrometria de Massas , Extratos Vegetais/química , Sesquiterpenos/química , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA