Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 325(Pt B): 116560, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36279772

RESUMO

Aerated compost tea (ACT) contains soluble humic substances (SHS) that are expected to alter the dynamics and ecotoxicity of Cu in soil. This study investigated the efficiency of ACT in enhancing the mobility and phytoextraction of Cu in vineyard soil. Crimson clover (Trifolium incarnatum L.) was grown on a vineyard soil at three concentrations of Cu (90, 261 and 432 mg kg-1), and supplied (or not) with ACT, then sampled after 56 days to determine the amount of Cu phytoextracted. Soil was extracted with 0.01 M KCl and potentiometric analyses were performed to measure the impact of ACT on the speciation of Cu in the extraction solution. ACT was found to increase the mobility of Cu in the soil by a factor of 3-14 depending on the soil Cu content and on the soil extraction date. The increase in Cu mobility was associated with an increase in absorbance at 254 nm and with a decrease in the free ionic fraction of Cu in the KCl extract, suggesting that Cu was mainly mobilized by the SHS present in the compost tea, and through a ligand-controlled dissolution process. ACT increased Cu phytoextraction at Cu90 and Cu261 by on average 80% thanks to its positive impact on plant growth, and on Cu accumulation in plant shoots, whereas it reduced Cu phytoextraction at Cu432 due to its deleterious effect on plant growth at this soil Cu content. ACT is thus an efficient way to increase the phytoavailability of Cu in soil, but probably should not be used in vineyard soils that are highly contaminated by Cu. To obtain Cu phytoextraction yields in line with the needs of the wine sector, the use of ACT needs to be associated with the cultivation of a Cu-accumulating plant.


Assuntos
Compostagem , Poluentes do Solo , Solo , Cobre/análise , Poluentes do Solo/análise , Fazendas , Biodegradação Ambiental , Chá
2.
Sci Total Environ ; 850: 157907, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35985599

RESUMO

The objective of this study was to assess the effects of different intensities of biomass harvesting, and the possible effects of compensation methods, on forest functioning. To do so, we carried out a split-plot experiment (SW France) crossing four different intensities of biomass harvesting (Stem-Only Harvest [SOH], Aboveground Additional Harvest [AAH], Belowground Additional Harvest [BAH], and Whole-Tree Harvest [WTH]) and three compensation methods (control [C], wood ash application [A] and phosphorus fertilisation [P]). The experimental treatments were followed by the plantation of pines (Pinus pinaster). The environmental consequences of treatments on soil and vegetation were evaluated 11 years after the tree plantation. Despite their low additional biomass exports (+10 % for AAH to +34 % for WTH), the non-conventional harvest practices exported much higher quantities of nutrients than the conventional SOH technique (+145 % of exported N in WTH). Additional biomass harvests impacted the soil organic matter content, with negative effects on P-organic, soil cation exchange capacity, exchangeable Ca, and most extractible nutrients. However, tree nutritional status was improved by P-fertiliser or wood ash. We observed a positive effect of wood ash application on soil pH and nutrient content but, like additional harvests, wood ash application decreased the pool of soil organic carbon (~10 %). Overall, the experiment showed that exporting more forest biomass due to the additional harvesting of biomass had negative consequences on the ecosystem biogeochemistry. Additional harvests have impoverished the soil, and decreased the soil organic carbon content. Importantly, applying nutrients as fertiliser or wood ash did not compensate for all the negative impacts of biomass exports and the method of wood ash recycling in forests could even decrease the soil organic carbon.


Assuntos
Pinus , Solo , Biomassa , Carbono , Ecossistema , Fertilização , Fertilizantes , Florestas , Fósforo , Solo/química , Árvores/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA