Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35193958

RESUMO

Mycobacterium tuberculosis (Mtb) possesses five type VII secretion systems (T7SS), virulence determinants that include the secretion apparatus and associated secretion substrates. Mtb strains deleted for the genes encoding substrates of the ESX-3 T7SS, esxG or esxH, require iron supplementation for in vitro growth and are highly attenuated in vivo. In a subset of infected mice, suppressor mutants of esxG or esxH deletions were isolated, which enabled growth to high titers or restored virulence. Suppression was conferred by mechanisms that cause overexpression of an ESX-3 paralogous region that lacks genes for the secretion apparatus but encodes EsxR and EsxS, apparent ESX-3 orphan substrates that functionally compensate for the lack of EsxG or EsxH. The mechanisms include the disruption of a transcriptional repressor and a massive 38- to 60-fold gene amplification. These data identify an iron acquisition regulon, provide insight into T7SS, and reveal a mechanism of Mtb chromosome evolution involving "accordion-type" amplification.


Assuntos
Mycobacterium tuberculosis/genética , Sistemas de Secreção Tipo VII/genética , Animais , Sistemas de Secreção Bacterianos/genética , Evolução Biológica , Evolução Molecular , Amplificação de Genes/genética , Camundongos , Mycobacterium tuberculosis/metabolismo , Sistemas de Secreção Tipo VII/fisiologia , Virulência , Fatores de Virulência/genética
2.
Mol Biosyst ; 13(5): 939-954, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28358152

RESUMO

Fusobacterium nucleatum plays a key role in several diseases such as periodontitis, gingivitis, appendicitis, and inflammatory bowel disease (IBD). The development of antibiotic resistance by this bacterium demands novel therapeutic intervention. Our recent study has reported UDP-N-acetylglucosamine 1-carboxyvinyltransferase (MurA) as one of the potential target proteins in F. nucleatum. In this study, we proposed two novel MurA inhibitors through in silico screening and evaluated their mode of inhibition by in vitro experiments. It was found that MurA structural arrangement (inside-out α/ß barrel) was stabilized by L/FXXXG(A) motif-based interactions. The protein was maintained in an open or substrate-free conformation due to repulsive forces between two parallelly arranged positively charged residues of domain I and II. In this conformation, we identified six best compounds that held key interactions with the substrate-binding pocket via a structure-based virtual screening of natural and chemical compound libraries. However, among these, only orientin and quercetin-3-O-d-glucuronide (Q3G) showed better interaction capability through consistent H-bond occupancy and lowest binding free energy during molecular dynamic simulations. In vitro inhibition studies evidenced the mixed and uncompetitive mode of inhibition by orientin and Q3G, respectively, with purified MurA protein. This explains the binding of orientin in both open and closed (substrate-bound) conformations of MurA, and Q3G binding in only closed conformation. Therefore, the Q3G binding mode was predicted on a MurA-substrate complex, which highlighted its constant H-bond with Cys118, a phosphoenolpyruvate (PEP) interacting residue. This suggests that Q3G may interrupt the PEP binding, thereby inhibiting the MurA activity. Thus, the current study discusses the structure of MurA and demonstrates the inhibitory action of two novel compounds.


Assuntos
Alquil e Aril Transferases/antagonistas & inibidores , Biologia Computacional/métodos , Inibidores Enzimáticos/farmacologia , Fusobacterium nucleatum/enzimologia , Alquil e Aril Transferases/química , Proteínas de Bactérias/antagonistas & inibidores , Simulação por Computador , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Flavonoides/química , Flavonoides/farmacologia , Glucosídeos/química , Glucosídeos/farmacologia , Ligação de Hidrogênio , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica , Quercetina/análogos & derivados , Quercetina/química , Quercetina/farmacologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA