RESUMO
Ethnopharmacological relevance: The past couple of decades have witnessed the global resurgence of medicinal plants in the field of herbal-based health care. Increased consumption of medicinal plants and their derivative products is the major cause of the adulteration issues in herbal industries. As a result, the quality of herbal products is affected by spurious and unauthorized raw materials. Recent development in molecular plant identification using DNA barcodes has become a robust methodology to identify and authenticate the adulterants in herbal samples. Hence, rapid and accurate identification of medicinal plants is the key to success for the herbal industry. Aim of the study: This paper provides a comprehensive review of the application of DNA barcoding and advanced technologies that have emerged over the past 10 years related to medicinal plant identification and authentication and the future prospects of this technology. Materials and methods: Information on DNA barcodes was compiled from scientific databases (Google Scholar, Web of Science, SciFinder and PubMed). Additional information was obtained from books, Ph.D. thesis and MSc. Dissertations. Results: Working out an appropriate DNA barcode for plants is challenging; the single locus-based DNA barcodes (rbcL, ITS, ITS2, matK, rpoB, rpoC, trnH-psbA) to multi-locus DNA barcodes have become the successful species-level identification among herbal plants. Additionally, multi-loci have become efficient in the authentication of herbal products. Emerging advances in DNA barcoding and related technologies such as next-generation sequencing, high-resolution melting curve analysis, meta barcodes and mini barcodes have paved the way for successful herbal plant/samples identification. Conclusion: DNA barcoding needs to be employed together with other techniques to check and rationally and effectively quality control the herbal drugs. It is suggested that DNA barcoding techniques combined with metabolomics, transcriptomics, and proteomics could authenticate the herbal products. The invention of simple, cost-effective and improved DNA barcoding techniques to identify herbal drugs and their associated products of medicinal value in a fool-proof manner will be the future thrust of Pharmacopoeial monograph development for herbal drugs.
RESUMO
INTRODUCTION: Chronic obstructive pulmonary disease (COPD) is an inflammatory disease caused by increasing breathing passage obstruction which completely disrupts human homeostasis. Some patients require lung transplantation or long-term oxygen therapy. COPD is one of the noxious diseases and its fourth leading cause of death around the globe. There is an immediate need for potential drug development to tackle this serious disease. Folk medicines are used to combat complex diseases that have shown effectiveness in the treatment of breathing diseases. Vitex negundo L. is an ethnobotanically important medicinal plant used for various ailments and modulates human cellular events. This shrub has diverse specialized metabolites and is being used as complementary medicine in various countries. Though systems-level understanding is there on the mode of action, the multi-target treatment strategy for COPD is still a bottleneck. METHODS: In this investigation, systems pharmacology, cheminformatics, and molecular docking analyses were performed to unravel the multi-targeted mechanisms of V. negundo L. potential bioactives to combat COPD. RESULTS: Cheminformatics analysis combined with the target mining process identified 86 specialized metabolites and their corresponding 1300 direct human receptors, which were further imputed and validated systematically. Furthermore, molecular docking approaches were employed to evaluate the potential activity of identified potential compounds. In addition, pharmacological features of these bioactives were compared with available COPD drugs to recognize potential compounds that were found to be more efficacious with higher bioactive scores. CONCLUSIONS: The present study unravels the druggable targets and identifies the bioactive compounds present in V. negundo L., that may be utilized for potential treatment against COPD. However, further in vivo analyses and clinical trials of these molecules are essential to deciphering their efficacy.
Assuntos
Doença Pulmonar Obstrutiva Crônica , Vitex , Humanos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Vitex/metabolismoRESUMO
The unique medicinal and nutritional properties of honey are determined by its chemical composition. To evaluate the quality of honey, it is essential to study the surrounding vegetation where honeybees forage. In this study we used conventional melissopalynological and DNA barcoding techniques to determine the floral source of honey samples collected from different districts of the state of Mizoram, India. Pollen grains were isolated and genomic DNA was extracted from the honey samples. PCR amplification was carried out using universal barcode candidates ITS2 and rbcL to identify the plant species. Furthermore, TA cloning was carried out to screen the PCR amplicon libraries to identify the presence of multiple plant species. Results from both the melissopalynological and DNA barcoding analyses identified almost exactly the same 22 species, suggesting that both methods are suitable for analysis. However, DNA barcoding is easier and widely practiced. Hence, it can be concluded that DNA barcoding is a useful tool in determining the medicinal and commercial value of honey.
Assuntos
Abelhas/fisiologia , Código de Barras de DNA Taxonômico , Mel/análise , Plantas/classificação , Pólen/classificação , Animais , DNA Intergênico/genética , DNA de Plantas/química , DNA de Plantas/genética , Flores/classificação , Flores/genética , Índia , Plantas/genética , Pólen/genética , Reação em Cadeia da Polimerase , Ribulose-Bifosfato Carboxilase/genéticaRESUMO
INTRODUCTION: India is considered the 'medicinal garden' of the world, with 8000 medicinal plants of which 960 are commercial species that are traded nationally and globally. Although scientific studies estimate herbal product adulteration as 42-66 % in North America, India does not have any published marketplace studies and subsequent estimates of adulteration in an industry facing considerable supply demands. OBJECTIVES: The goal of this project is to provide an initial assessment of herbal product authentication and adulteration in the marketplace in India by (1) developing a biological reference material (BRM) herbal DNA library for Indian herbal species using DNA barcode regions (ITS2 and rbcL) in order to facilitate accurate species resolution when testing the herbal products; and (2) assessing herbal product identification using our BRM library; and (3) comparing the use of our BRM library to identify herbal products with that of GenBank. METHODS: A BRM herbal DNA library consisting of 187 herbal species was prepared to authenticate the herbal products within India. Ninty-three herbal products representing ten different companies were procured from local stores located at Coimbatore, India. These samples were subjected to blind testing for authenticity using the DNA barcode regions rbcL and ITS2. RESULTS: The results indicate that 40 % of the products tested are authentic, and 60 % of the products may be adulterated (i.e. contained species of plants not listed on the product labels). The adulterated samples included contamination (50 %), substitution (10 %) and fillers (6 %). Our BRM library provided a 100 % Basic Local Alignment Search Tool (BLAST) match for all species, whereas the GenBank match was 64 %. CONCLUSIONS: Our findings suggest that most Indian herbal medicinal products are essentially mixed with one or a few other herbs that could lessen the therapeutic activity of the main ingredients. We do not recommend the use of GenBank to identify herbal products because the use of this non-curated and/or vouchered database will result in inaccurate species identification. These DNA-based tools provide a scientific foundation for herbal pharmacovigilance to ensure the safety and efficacy of natural drugs. This study provides curated BRMs that will underpin innovations in molecular diagnostic biotechnology, which will soon provide more robust estimates of adulteration and commercial tools that will strengthen due diligence in quality assurance within the herbal industry.