RESUMO
L-asparaginase (L-asparagine amidohydrolase EC 3.5.1.1) is of great importance in pharmaceutical and food applications. This review aims to describe the production and use of fungal L-asparaginase focusing on its potential as an effective reducer of acrylamide in different food applications. Fungal asparaginases have been used as food additives and have gained importance due to some technical advantages, for example, fungi can grow using low-cost culture mediums, and the enzyme is extracellular, which facilitates purification steps. Research aimed at the discovery of new L-asparaginases, mainly those produced by fungi, have great potential to obtain cheaper enzymes with desirable properties for application in food aiming at the reduction of acrylamide.
Assuntos
Asparaginase/biossíntese , Tecnologia de Alimentos , Fungos/enzimologia , Acrilamida/análise , Acrilamida/química , Asparaginase/isolamento & purificação , Asparagina/química , Aspergillus/enzimologia , Pão/análise , Café/química , Fermentação , Aditivos Alimentares , Análise de Alimentos , Solanum tuberosum/químicaRESUMO
Propolis is the generic name given to the product obtained from resinous substances, which is gummy and balsamic and which is collected by bees from flowers, buds, and exudates of plants. It is a popular folk medicine possessing a broad spectrum of biological activities. These biological properties are related to its chemical composition and more specifically to the phenolic compounds that vary in their structure and concentration depending on the region of production, availability of sources to collect plant resins, genetic variability of the queen bee, the technique used for production, and the season in which propolis is produced. Many scientific articles are published every year in different international journal, and several groups of researchers have focused their attention on the chemical compounds and biological activity of propolis. This paper presents a review on the publications on propolis and patents of applications and biological constituents of propolis.
RESUMO
Two different techniques of glucosyltransferase immobilization were studied for the conversion of sucrose into isomaltulose. The optimum conditions for immobilization of Erwinia sp. glucosyltransferase onto Celite 545, determined using response surface methodology, was pH 4.0 and 170 U of glucosyltransferase/g of Celite 545. Using this conditions more than 60% conversion of sucrose into isomaltulose can be obtained. The immobilization of glucosyltransferase was also studied by its entrapment in microcapsules of low-methoxyl pectin and fat (butter and oleic acid). The non-lyophilized microcapsules of pectin, containing the enzyme and fat, showed higher glucosyltransferase activity, compared with lyophilized microcapsules containing enzyme plus fat, and also lyophilized microcapsules containing enzyme without fat addition. The non-lyophilized microcapsules of pectin containing the glucosyltransferase and fat, converted 30% of sucrose into isomaltulose in the first batch. However the conversion decreased to 5% at the 10th batch, indicating inactivation of the enzyme.