Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 232: 123340, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-36682659

RESUMO

The in situ identification of superbugs with the simultaneous killing of it is key to preventing human health. Here, a one-stop identification and killing platform for near-infrared (NIR) triggering was designed and constructed using lignosulfonate (LS), cationic guar gum (CG) and Ag2O NPs hydrogels (LS/CG/Ag2O). The hydrogel network is used as a fixed matrix for Ag2O NPs and a nano reactor, meanwhile 3,3', 5,5'-tetramethylbenzidine (TMB) as a single probe sensor array for bacterial identification. In contrast to conventional methods, hybrid hydrogels have catalytic qualities through which TMB be catalyzed to generate oxidized TMB (oxTMB). The drug resistance of the same strain can be distinguished based on the different inhibition abilities of drug-resistant superbacteria in TMB and hydrogel reactions. Then, the employing of oxTMB photothermal characteristics, it can be efficiently killed in real time while being driven by a near-infrared laser. The proposed one-stop hydrogel platform paves a way for the rapid identification and killing of drug-resistant superbacteria.


Assuntos
Antibacterianos , Hidrogéis , Humanos , Hidrogéis/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Fototerapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA