Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38338448

RESUMO

Coleus forskohlii (Willd.) Briq. is a medicinal herb of the Lamiaceae family. It is native to India and widely present in the tropical and sub-tropical regions of Egypt, China, Ethiopia, and Pakistan. The roots of C. forskohlii are edible, rich with pharmaceutically bioactive compounds, and traditionally reported to treat a variety of diseases, including inflammation, respiratory disorders, obesity, and viral ailments. Notably, the emergence of viral diseases is expected to quickly spread; consequently, these data impose a need for various approaches to develop broad active therapeutics for utilization in the management of future viral infectious outbreaks. In this study, the naturally occurring labdane diterpenoid derivative, Forskolin, was obtained from Coleus forskohlii. Additionally, we evaluated the antiviral potential of Forskolin towards three viruses, namely the herpes simplex viruses 1 and 2 (HSV-1 and HSV-2), hepatitis A virus (HAV), and coxsackievirus B4 (COX-B4). We observed that Forskolin displayed antiviral activity against HAV, COX-B4, HSV-1, and HSV-2 with IC50 values of 62.9, 73.1, 99.0, and 106.0 µg/mL, respectively. Furthermore, we explored the Forskolin's potential antiviral target using PharmMapper, a pharmacophore-based virtual screening platform. Forskolin's modeled structure was analyzed to identify potential protein targets linked to its antiviral activity, with results ranked based on Fit scores. Cathepsin L (PDB ID: 3BC3) emerged as a top-scoring hit, prompting further exploration through molecular docking and MD simulations. Our analysis revealed that Forskolin's binding mode within Cathepsin L's active site, characterized by stable hydrogen bonding and hydrophobic interactions, mirrors that of a co-crystallized inhibitor. These findings, supported by consistent RMSD profiles and similar binding free energies, suggest Forskolin's potential in inhibiting Cathepsin L, highlighting its promise as an antiviral agent.


Assuntos
Herpesvirus Humano 1 , Colforsina/farmacologia , Colforsina/química , Catepsina L , Simulação de Acoplamento Molecular , Herpesvirus Humano 1/metabolismo , Antivirais/farmacologia , Antivirais/química
2.
Sci Rep ; 13(1): 14192, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37648727

RESUMO

The current study investigated the scabicidal potential of Egyptian mandarin peel oil (Citrus reticulata Blanco, F. Rutaceae) against sarcoptic mange-in-rabbits. Analysis of the oil's GC-MS identified a total of 20 compounds, accounting for 98.91% of all compounds found. Mandarin peel oil topical application improved all signs of infection, causing a scabicidal effect three days later, whereas in vitro application caused complete mite mortality one day later. In comparison to ivermectin, histopathological analysis showed that the epidermis' inflammatory-infiltration/hyperkeratosis-had disappeared. In addition to TIMP-1, the results of the mRNA gene expression analysis showed upregulation of I-CAM-1-and-KGF and downregulation of ILs-1, 6, 10, VEGF, MMP-9, and MCP-1. The scabies network was constructed and subjected to a comprehensive bioinformatic evaluation. TNF-, IL-1B, and IL-6, the top three hub protein-coding genes, have been identified as key therapeutic targets for scabies. From molecular docking data, compounds 15 and 16 acquired sufficient affinity towards the three screened proteins, particularly both possessing higher affinity towards the IL-6 receptor. Interestingly, it achieved a higher binding energy score than the ligand of the docked protein rather than displaying proper binding interactions like those of the ligand. Meanwhile, geraniol (15) showed the highest affinity towards the GST protein, suggesting its contribution to the acaricidal effect of the extract. The subsequent, MD simulations revealed that geraniol can achieve stable binding inside the binding site of both GST and IL-6. Our findings collectively revealed the scabicidal ability of mandarin peel extract for the first time, paving the way for an efficient, economical, and environmentally friendly herbal alternative for treating rabbits with Sarcoptes mange.


Assuntos
Lagomorpha , Escabiose , Animais , Coelhos , Escabiose/tratamento farmacológico , Regulação para Baixo , Egito , Cromatografia Gasosa-Espectrometria de Massas , Interleucina-6 , Ligantes , Simulação de Acoplamento Molecular , Extratos Vegetais
3.
Food Funct ; 14(15): 7156-7175, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37462414

RESUMO

Vitis vinifera Egyptian edible leaf extract loaded on a soybean lecithin, cholesterol, and Carbopol gel preparation (VVL-liposomal gel) was prepared to maximize the in vivo wound healing and anti-MRSA activities for the crude extract, using an excision wound model and focusing on TLR-2, MCP-1, CXCL-1, CXCL-2, IL-6 and IL-1ß, and MRSA (wound infection model, and peritonitis infection model). VVL-liposomal gel was stable with significant drug entrapment efficiency reaching 88% ± 3, zeta potential value ranging from -50 to -63, and a size range of 50-200 µm nm in diameter. The in vivo evaluation proved the ability of VVL-liposomal gel to gradually release the drugs in a sustained manner with greater complete wound healing effect and tissue repair after 7 days of administration, with a significant decrease in bacterial count compared with the crude extract. Phytochemical investigation of the crude extract of the leaves yielded fourteen compounds: two new stilbenes (1, 2), along with twelve known ones (3-14). Furthermore, a computational study was conducted to identify the genes and possible pathways responsible for the anti-MRSA activity of the isolated compounds, and inverse docking was used to identify the most likely molecular targets that could mediate the extract's antibacterial activity. Gyr-B was discovered to be the best target for compounds 1 and 2. Hence, VVL-liposomal gel can be used as a novel anti-dermatophytic agent with potent wound healing and anti-MRSA capacity, paving the way for future clinical research.


Assuntos
Vitis , Cicatrização , Antibacterianos/química , Lipossomos/química , Géis , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química
4.
J Enzyme Inhib Med Chem ; 38(1): 2199950, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37080775

RESUMO

Trypanosomiasis is a protozoan disease transmitted via Trypanosoma brucei. This study aimed to examine the metabolic profile and anti-trypanosomal effect of methanol extract of Thunbergia grandifolia leaves. The liquid chromatography-high resolution electrospray ionisation mass spectrometry (LC-HRESIMS) revealed the identification of fifteen compounds of iridoid, flavonoid, lignan, phenolic acid, and alkaloid classes. The extract displayed a promising inhibitory activity against T. brucei TC 221 with MIC value of 1.90 µg/mL within 72 h. A subsequent in silico analysis of the dereplicated compounds (i.e. inverse docking, molecular dynamic simulation, and absolute binding free energy) suggested both rhodesain and farnesyl diphosphate synthase as probable targets for two compounds among those dereplicated ones in the plant extract (i.e. diphyllin and avacennone B). The absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiling of diphyllin and avacennone were calculated accordingly, where both compounds showed acceptable drug-like properties. This study highlighted the antiparasitic potential of T. grandifolia leaves.


Assuntos
Acanthaceae , Lignanas , Trypanosoma brucei brucei , Simulação de Acoplamento Molecular , Lignanas/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química
5.
Comb Chem High Throughput Screen ; 26(12): 2124-2148, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36650620

RESUMO

Toll-like receptors (TLRs) control both innate and adaptive immunity with a wide expression on renal epithelial cells and leukocytes. Activation of TLRs results in the production of cytokines, chemokines and interferons along with activation of the transcription factor NF-κB, resulting in inflammatory perturbations. TLR4 signaling pathway is the most extensively studied of TLRs. TLR4 is expressed on renal microvascular endothelial and tubular epithelial cells. So, targeting TLR4 modulation could be a therapeutic approach to attenuate kidney diseases that are underlined by inflammatory cascade. Medicinal plants with anti-inflammatory activities display valuable effects and are employed as alternative sources to alleviate renal disease linked with inflammation. Flavonoids and other phytochemicals derived from traditional medicines possess promising pharmacological activities owing to their relatively cheap and high safety profile. Our review focuses on the potent anti-inflammatory activities of twenty phytochemicals to verify if their potential promising renoprotective effects are related to suppression of TLR4 signaling in different renal diseases, including sepsis-induced acute kidney injury, renal fibrosis, chemotherapy-induced nephrotoxicity, diabetic nephropathy and renal ischemia/reperfusion injury. Additionally, molecular docking simulations were employed to explore the potential binding affinity of these phytochemicals to TLR4 as a strategy to attenuate renal diseases associated with activated TLR4 signaling.


Assuntos
Nefropatias Diabéticas , Receptor 4 Toll-Like , Humanos , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/uso terapêutico , Simulação de Acoplamento Molecular , Rim/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
6.
BMC Complement Med Ther ; 23(1): 24, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717906

RESUMO

BACKGROUND: Calamus rotang L. (CR) is an Indian shrub. The leaves and other organs of the plant are traditionally used in India for treatment of various diseases. The in vitro antioxidant property of the leaves extract was previously established. Thus, the current study aimed to evaluate the antioxidant and hepatoprotective effects of CR ethyl acetate extract at a dose of 350 mg/kg on CCl4 induced hepatotoxic rats through different mechanisms. METHODS: Histopathological examination of the treated rats' group in comparison with positive and negative controls were performed. Quantitative measuring of the proinflammatory cytokines (TNF α), inflammatory regulators (Arginase, PPAR α) and the antiapoptotic protein Bcl-2 in comparison with positive and negative control groups was achieved using immunohistochemical examination. HPLC profiling of the polyphenol contents and molecular docking of the identified compounds against BH3 proapoptotic protein were correspondingly studied to evaluate the potential antiapoptotic property. RESULTS: The CR extract greatly protects the liver tissue through the suppression of TNF α, arginase and PPAR α induced by CCl4 as well as its enhancement of the antiapoptotic Bcl-2 protein. Fourteen polyphenols of different classes were identified in CR extract and tested via molecular docking for their potential antiapoptotic activities against BH3 protein. Naringin, rutin, 7-hydroxy flavone, and ellagic acid compounds exhibit the highest affinity and potential inhibition of pro-apoptotic protein BH3 via molecular docking study. CONCLUSIONS: The ethyl acetate fraction of the leaves of C. rotang is rich in polyphenols that exhibited potent hepatoprotective effect on CCl4 induced hepatotoxic rats through its antioxidant, anti-inflammatory, anti-steatosis and antiapoptotic properties.


Assuntos
Antioxidantes , Calamus , Ratos , Animais , Antioxidantes/química , Extratos Vegetais/química , Fator de Necrose Tumoral alfa , Simulação de Acoplamento Molecular , Arginase , PPAR alfa
7.
Environ Sci Pollut Res Int ; 30(8): 21872-21887, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36279063

RESUMO

In this study, we utilized pomegranate peel and marine algae Ulva lactuca (U. lactuca) as rich and sustained sources of bioactive compounds to combat tomato-black spot disease. n-Hexane extracts from the peel of pomegranate (Punica granatum) (PPE) and the marine algal biomass U. lactuca (ULE) were used alone and in combinations to verify their impact against Alternaria alternata (A. alternata). The applied extracts exhibited severe destructive effects on both fungal growth and structure such as mycelia malformation, underdeveloped conidia, cell wall deformation, and shrinkage. Moreover, increased deformations and protrusions, and notch-like structures, were noticed in A. alternata mycelia treated with mixed extracts (PPE and ULE) compared to all other treatments. The protein and reduced sugar contents in tomato fruits were significantly increased in the infected fruits with A. alternata. The highest enzyme activities of pectinase, cellulase, catalase (CAT), and ascorbate peroxidase (APX) were recorded in infected tomatoes in comparison with the healthy ones. Molecular docking studies showed that each extract is rich with bioactive compounds that have a promising inhibition effect on A. alternata cellulases. Pomegranate and Ulva extract showed promising antifungal activity against A. alternata which revealed their feasibility and applicability as biocontrol agents in postharvest disease management and food preservation against fungal pathogens.


Assuntos
Punica granatum , Ulva , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Alternaria
8.
Antioxidants (Basel) ; 11(10)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36290603

RESUMO

The purpose of this investigation was to determine ¹H-NMR profiling and antioxidant activity of the most common types of honey, namely, citrus honey (HC1) (Morcott tangerine L. and Jaffa orange L.), marjoram honey (HM1) (Origanum majorana L.), and clover honey (HT1) (Trifolium alexandrinum L.), compared to their secondary metabolites (HC2, HM2, HT2, respectively). By using a ¹H-NMR-based metabolomic technique, PCA, and PLS-DA multivariate analysis, we found that HC2, HM2, HC1, and HM1 were clustered together. However, HT1 and HT2 were quite far from these and each other. This indicated that HC1, HM1, HC2, and HM2 have similar chemical compositions, while HT1 and HT2 were unique in their chemical profiles. Antioxidation potentials were determined colorimetrically for scavenging activities against DPPH, ABTS, ORAC, 5-LOX, and metal chelating activity in all honey extract samples and their secondary metabolites. Our results revealed that HC2 and HM2 possessed more antioxidant activities than HT2 in vitro. HC2 demonstrated the highest antioxidant effect in all assays, followed by HM2 (DPPH assay: IC50 2.91, 10.7 µg/mL; ABTS assay: 431.2, 210.24 at 50 ug/mL Trolox equivalent; ORAC assay: 259.5, 234.8 at 50 ug/mL Trolox equivalent; 5-LOX screening assay/IC50: 2.293, 6.136 ug/mL; and metal chelating activity at 50 ug/mL: 73.34526%, 63.75881% inhibition). We suggest that the presence of some secondary metabolites in HC and HM, such as hesperetin, linalool, and caffeic acid, increased the antioxidant activity in citrus and marjoram compared to clover honey.

9.
Molecules ; 27(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36296628

RESUMO

Aphthous ulcers are very common disorders among different age groups and are very noxious and painful. The incidence of aphthous ulcer recurrence is very high and it may even last for a maximum of 6 days and usually, patients cannot stand its pain. This study aims to prepare a buccoadhesive fast dissolving film containing Corchorus olitorius seed extract to treat recurrent minor aphthous ulceration (RMAU) in addition to clinical experiments on human volunteers. An excision wound model was used to assess the in vivo wound healing potential of Corchorus olitorius L. seed extract, with a focus on wound healing molecular targets such as TGF-, TNF-, and IL-1. In addition, metabolomic profiling using HR-LCMS for the crude extract of Corchorus olitorius seeds was explored. Moreover, molecular docking experiments were performed to elucidate the binding confirmation of the isolated compounds with three molecular targets (TNF-α, IL-1ß, and GSK3). Additionally, the in vitro antioxidant potential of C. olitorius seed extract using both H2O2 and superoxide radical scavenging activity was examined. Clinical experiments on human volunteers revealed the efficiency of the prepared C. olitorius seeds buccal fast dissolving film (CoBFDF) in relieving pain and wound healing of RMAU. Moreover, the wound healing results revealed that C. olitorius seed extract enhanced wound closure rates (p ≤ 0.001), elevated TGF-ß levels and significantly downregulated TNF-α and IL-1ß in comparison to the Mebo-treated group. The phenotypical results were supported by biochemical and histopathological findings, while metabolomic profiling using HR-LCMS for the crude extract of Corchorus olitorius seeds yielded a total of 21 compounds belonging to diverse chemical classes. Finally, this study highlights the potential of C. olitorius seed extract in wound repair uncovering the most probable mechanisms of action using in silico analysis.


Assuntos
Corchorus , Estomatite Aftosa , Humanos , Corchorus/química , Estomatite Aftosa/tratamento farmacológico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Voluntários Saudáveis , Fator de Necrose Tumoral alfa , Superóxidos , Simulação de Acoplamento Molecular , Quinase 3 da Glicogênio Sintase , Peróxido de Hidrogênio , Extratos Vegetais/farmacologia , Sementes , Dor , Fator de Crescimento Transformador beta , Interleucina-1
10.
Mar Drugs ; 20(10)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36286462

RESUMO

The protective and therapeutic anti-inflammatory and antioxidant potency of Malapterurus electricus (F. Malapteruridae) skin fish methanolic extract (FE) (300 mg/kg.b.wt/day for 7 days, orally) was tested in monosodium urate(MSU)-induced arthritic Wistar albino male rats' joints. Serum uric acid, TNF-α, IL-1ß, NF-𝜅B, MDA, GSH, catalase, SOD, and glutathione reductase levels were all measured. According to the findings, FE significantly reduced uric acid levels and ankle swelling in both protective and therapeutic groups. Furthermore, it has anti-inflammatory effects by downregulating inflammatory cytokines, primarily through decreased oxidative stress and increased antioxidant status. All the aforementioned lesions were significantly improved in protected and treated rats with FE, according to histopathological findings. iNOS immunostaining revealed that protected and treated arthritic rats with FE had weak positive immune-reactive cells. Phytochemical analysis revealed that FE was high in fatty and amino acids. The most abundant compounds were vaccenic (24.52%), 9-octadecenoic (11.66%), palmitic (34.66%), stearic acids (14.63%), glycine (0.813 mg/100 mg), and alanine (1.645 mg/100 mg). Extensive molecular modelling and dynamics simulation experiments revealed that compound 4 has the potential to target and inhibit COX isoforms with a higher affinity for COX-2. As a result, we contend that FE could be a promising protective and therapeutic option for arthritis, aiding in the prevention and progression of this chronic inflammatory disease.


Assuntos
Antioxidantes , Ácido Úrico , Ratos , Animais , Antioxidantes/metabolismo , Catalase , Fator de Necrose Tumoral alfa/metabolismo , Ciclo-Oxigenase 2 , Metanol , Glutationa Redutase , Ratos Wistar , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Citocinas/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Compostos Fitoquímicos , Superóxido Dismutase , Ácidos Esteáricos , Alanina , Glicina , Aminoácidos
11.
Food Funct ; 13(21): 11083-11096, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36200448

RESUMO

Otomycosis is a serious superficial mycotic infection of the outer ear canal caused by some pathogenic species of Candida and Aspergillus. The infection remains a challenge to clinicians owing to the incomplete efficacy of market-available antifungal agents and high recurrence rates. The Moringa oleifera leaf ethanol extract showed efficacy against Candida albicans SC5314, compared to Nystatin® as a reference with MIC values of 7 and 718.33 µg ml-1, respectively. The extract was mixed with lecithin and chitosan to give Moringa core/shell giant nanoparticles, with a good zeta potential (+59.2 mV), a suitable entrapment efficiency (61%) and an enhanced release reaching up to 90% at 8 h. Clinical isolates from oomycote patients were identified via DNA sequencing as Candida parapsilosis, Aspergillus niger and Aspergillus flavus, and the effect of the prepared nanoparticles was tested against them via disk diffusion assay to give inhibition zones of 75, 55 and 55 mm, compared to Nystatin® with 35, 25 and 20 mm, respectively. Interestingly, patients treated with the Moringa-loaded nanoparticles experienced improvement within 1 week with no recurrence for more than 3 months. To have some insight into the bioactive components in the Moringa extract, LC-HRMS-based identification has been employed which led to the annotation of 27 compounds. Subsequent comprehensive in silico investigation suggested some alkaloids to be responsible for the activity targeting the fungal 14-α-demethylase enzyme (CYP51B). Our study revealed that Moringa extract-loaded nanoparticles attained an enhanced antifungal efficacy compared to Nystatin® and therefore they can be employed against invasive and drug-resistant otomycotic infections.


Assuntos
Anti-Infecciosos , Moringa oleifera , Nanopartículas , Otomicose , Humanos , Nistatina/farmacologia , Antifúngicos/farmacologia , Anti-Infecciosos/farmacologia , Extratos Vegetais/farmacologia
12.
Molecules ; 27(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36080381

RESUMO

Malaria is one of the most important infectious diseases worldwide. The causative of the most severe forms of malaria, Plasmodium falciparum, has developed resistances against all the available antimalarial drugs. In the present study, the phytochemical investigation of the green seaweed Halimeda macroloba has afforded two new compounds 1-2, along with 4 known ones 3-6. The structures of the compounds had been confirmed using 1& 2D-NMR and HRESIMS analyses. Extensive machine-learning-supported virtual-screening suggested cytochrome-C enzyme as a potential target for compound 2. Docking, absolute-binding-free-energy (ΔGbinding) and molecular-dynamics-simulation (MDS) of compound 2 revealed the strong binding interaction of this compound with cytochrome-C. In vitro testing for crude extract and isolated compounds revealed the potential in vitro inhibitory activity of both extract and compound 2 against P. falciparum. The crude extract was able to inhibit the parasite growth with an IC50 value of 1.8 ± 0.35 µg/mL. Compound 2 also showed good inhibitory activity with an IC50 value of 3.2 ± 0.23 µg/mL. Meanwhile, compound 6 showed moderate inhibitory activity with an IC50 value of 19.3 ± 0.51 µg/mL. Accordingly, the scaffold of compound 2 can be considered as a good lead compound for the future development of new antimalarial agents.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Alga Marinha , Antimaláricos/química , Citocromos , Humanos , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Extratos Vegetais/química , Plasmodium falciparum
13.
Plants (Basel) ; 11(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35890504

RESUMO

Origanum majoranum L. is a Lamiaceae medicinal plant with culinary and ethnomedical applications. Its biological and phytochemical profiles have been extensively researched. Accordingly, this study aimed to investigate the chemical composition and the antibacterial and antioxidant properties of O. majoranum high features, as well as to search for techniques for activity optimization. A metabolomics study of the crude extract of O. majoranum using liquid chromatography-high-resolution electrospray ionization mass spectrometry (LC ± HR ± ESI ± MS) was conducted. Five fractions (petroleum ether, dichloromethane, ethyl acetate, n-butanol, and aqueous) were derived from the total extract of the aerial parts. Different chromatographic methods and NMR analysis were utilized to purify and identify the isolated phenolics (high features). Moreover, the antimicrobial, antibiofilm, and antioxidant activity of phenolics were performed. Results showed that metabolomic profiling of the crude extract of O. majoranum aerial parts revealed the presence of a variety of phytochemicals, predominantly phenolics, resulting in the isolation and identification of seven high-feature compounds comprising two phenolic acids, rosmarinic and caffeic acids, one phenolic diterpene, 7-methoxyepirosmanol, in addition to four flavonoids, quercetin, hesperitin, hesperidin, and luteolin. On the other hand, 7-methoxyepirosmanol (OM1) displayed the most antimicrobial and antioxidant potential. Such a phenolic principal activity improvement seems to be established after loading on gold nanoparticles.

14.
Food Funct ; 13(13): 6859-6874, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35698869

RESUMO

Ischemia is a deadly disease featured by restricted perfusion to different organs in the body. An increase in the accumulation of reactive oxygen species and cell debris is the driving force for inducing many oxidative, inflammatory and apoptotic signaling pathways. However, the number of therapeutics existing for ischemic stroke patients is limited and there is insufficient data on their efficiency, which warrants the search for novel therapeutic candidates from natural sources. Herein, a comprehensive survey was done on the reported functional food bioactives (ca. 152 compounds) to manage or protect against health consequences of myocardial and cerebral ischemia. Furthermore, we reviewed the reported mechanistic studies for their anti-ischemic potential. Subsequently, network pharmacology- and in silico-based studies were conducted using the reported myocardial and cerebral ischemia-relevant molecular targets to study their complex interactions and highlight key targets in disease pathogenesis. Subsequently, the most prominent 20 compounds in the literature were used in a comprehensive in silico-based analysis (inverse docking, ΔG calculation and molecular dynamics simulation) to determine other potential targets for these compounds and their probable interactions with different signaling pathways relevant to this disease. Many functional food bioactives, belonging to different chemical classes, i.e., flavonoids, saponins, phenolics, alkaloids, iridoids and carotenoids, were proven to exhibit multifactorial effects in targeting the complex pathophysiology of ischemic conditions. These merits make them valuable therapeutic agents that can outperform the conventional drugs, and hence they can be utilized as add-ons to the conventional therapy for the management of different ischemic conditions; however, their rigorous clinical assessment is necessary.


Assuntos
Isquemia Encefálica , Doença da Artéria Coronariana , Medicamentos de Ervas Chinesas , Ingredientes de Alimentos , Isquemia Miocárdica , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Flavonoides/farmacologia , Humanos , Isquemia , Simulação de Acoplamento Molecular , Isquemia Miocárdica/tratamento farmacológico
15.
Food Funct ; 13(14): 7813-7830, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35766799

RESUMO

This work aimed to evaluate the anti-androgenic activity of S. blackburniana Glazebrook, S. causiarum (O. F. Cook) Becc, and S. palmetto (Walter) Lodd. Ex Schult fruit extracts in rats using Hershberger assay. Furthermore, to annotate secondary metabolites using LC-HRMS technique, to investigate underlying mechanisms responsible for 5-α-reductase inhibitory activity in silico and to compare cytotoxic effects in vitro against human prostatic stromal myofibroblast (WPMY-1) and human benign prostatic hyperplasia (BPH-1) cell lines using MTT, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (spectrophotometrically). The results showed significant anti-androgenic implications with varying degrees, markedly decreased sex organ weights, reduction in testosterone and increase in LH and FSH serum levels. Genetic diversity study ensured the correct genotype and revealed outperformance of SCoT compared with CBDP markers to interpret polymorphism among selected species. S. blackburniana exhibited selective cytotoxic activity against BPH-1 compared to finasteride. Molecular docking of 59 dereplicated metabolites belonging to various chemical classes revealed that helasaoussazine, pinoresinol and tetra-O-caffeoylquinic acid are the top inhibitors of 5-α-reductase-2. Our study provides an insight into the anti-androgenic activity of selected species of Egyptian Sabal supported by docking study for the first time, demonstrates safety toward liver and kidney and highlights a new potential therapeutic candidate for anti-androgenic related disease such as benign prostatic hyperplasia.


Assuntos
Hiperplasia Prostática , Serenoa , Antagonistas de Androgênios/farmacologia , Animais , Egito , Frutas , Humanos , Masculino , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Hiperplasia Prostática/tratamento farmacológico , Hiperplasia Prostática/genética , Ratos
16.
RSC Adv ; 12(19): 11769-11785, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35481086

RESUMO

Tamarindus indica Linn. (Tamarind, F. Fabaceae) is one of the most widely consumed fruits in the world. A crude extract and different fractions of T. indica (using n-hexane, dichloromethane, ethyl acetate, and n-butanol) were evaluated in vitro with respect to their DPPH scavenging and AchE inhibition activities. The results showed that the dichloromethane and ethyl acetate fractions showed the highest antioxidant activities, with 84.78 and 86.96% DPPH scavenging at 0.10 µg mL-1. The n-hexane, dichloromethane, and ethyl acetate fractions inhibited AchE activity in a dose-dependent manner, and the n-hexane fraction showed the highest inhibition at 20 µg mL-1. The results were confirmed by using n-hexane, dichloromethane, and ethyl acetate fractions in vivo to regress the neurodegenerative features of Alzheimer's dementia in an aluminum-intoxicated rat model. Phytochemical investigations of those three fractions afforded two new diphenyl ether derivative compounds 1-2, along with five known ones (3-7). The structures of the isolated compounds were confirmed via 1D and 2D NMR and HRESIMS analyses. The isolated compounds were subjected to extensive in silico-based investigations to putatively highlight the most probable compounds responsible for the anti-Alzheimer activity of T. indica. Inverse docking studies followed by molecular dynamics simulation (MDS) and binding free energy (ΔG) investigations suggested that both compounds 1 and 2 could be promising AchE inhibitors. The results presented in this study may provide potential dietary supplements for the management of Alzheimer's disease.

17.
Pharmaceuticals (Basel) ; 15(1)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35056143

RESUMO

E. coli is a Gram-negative bacterium that causes different human infections. Additionally, it resists common antibiotics due to its outer protective membrane. Natural products have been proven to be efficient antibiotics. However, plant natural products are far less explored in this regard. Accordingly, over 16,000 structures covering almost all African medicinal plants in AfroDb in a structural-based virtual screening were used to find efficient anti-E. coli candidates. These drug-like structures were docked into the active sites of two important molecular targets (i.e., E. coli's Ddl-B and Gyr-B). The top-scoring hits (i.e., got docking scores < -10 kcal/mol) produced in the initial virtual screening (0.15% of the database structures for Ddl-B and 0.17% of the database structures for Gyr-B in the database) were further refined using molecular dynamic simulation-based binding free energy (ΔG) calculation. Anthraquinones were found to prevail among the retrieved hits. Accordingly, readily available anthraquinone derivatives (10 hits) were selected, prepared, and tested in vitro against Ddl-B, Gyr-B, multidrug-resistant (MDR) E. coli, MRSA, and VRSA. A number of the tested derivatives demonstrated strong micromolar enzyme inhibition and antibacterial activity against E. coli, MRSA, and VRSA, with MIC values ranging from 2 to 64 µg/mL. Moreover, both E. coli's Ddl-B and Gyr-B were inhibited by emodin and chrysophanol with IC50 values comparable to the reference inhibitors (IC50 = 216 ± 5.6, 236 ± 8.9 and 0.81 ± 0.3, 1.5 ± 0.5 µM for Ddl-B and Gyr-B, respectively). All of the active antibacterial anthraquinone hits showed low to moderate cellular cytotoxicity (CC50 > 50 µM) against human normal fibroblasts (WI-38). Furthermore, molecular dynamic simulation (MDS) experiments were carried out to reveal the binding modes of these inhibitors inside the active site of each enzyme. The findings presented in this study are regarded as a significant step toward developing novel antibacterial agents against MDR strains.

18.
Phytother Res ; 36(1): 488-505, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34939704

RESUMO

This study targeted to examine the protective effects of acetovanillone (AV) against methotrexate (MTX)-induced hepatotoxicity. Thirty-two rats were allocated into four groups of eight animals; Group 1: Normal; Group 2: administered AV (100 ml/kg; P.O.) for 10 days; Group 3: challenged with MTX (20 mg/kg, i.p; single dose); Group 4: administered AV 5 days before and 5 days after MTX. For the first time, this study affords evidence for AV's hepatoprotective effects on MTX-induced hepatotoxicity. The underlined mechanisms behind its hepatic protection include counteracting MTX-induced oxidative injury via down-regulation of NADPH oxidase and up-regulation of Nrf2/ARE, SIRT1, PPARγ, and cytoglobin signals. Additionally, AV attenuated hepatic inflammation through down-regulation of IL-6/STAT-3 and NF-κB/AP-1 signaling. Network pharmacology analysis exhibited a high enrichment score between the interacting proteins and strongly suggested the intricate and essential role of the target proteins regulating MTX-induced oxidative damage and inflammatory perturbation. Besides, AV increased the in vitro cytotoxic activity of MTX toward PC-3, HeLa, and K562 cancer cell lines. On the whole, our investigation suggested that AV might be regarded as a promising adjuvant for the amelioration of MTX hepatotoxicity and/or increased its in vitro antitumor efficacy, and it could be used in patients receiving MTX.


Assuntos
Fator 2 Relacionado a NF-E2 , NF-kappa B , Acetofenonas , Animais , Interleucina-6 , Metotrexato/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Farmacologia em Rede , Ratos , Ratos Wistar , Transdução de Sinais , Fator de Transcrição AP-1
19.
Nat Prod Res ; 36(4): 1109-1114, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33249855

RESUMO

The phytochemical profiles of leaves and pollen grains' extracts of S. causiarum, S. palmetto and S. yapa were investigated and characterised by LC-HR-MS-based metabolomic analysis. Further, biomarker metabolites were determined using multivariate and clustering analysis. S. causiarum leaves extract along with both S. palmetto and S. yapa pollen grains extracts showed interesting in vitro cytotoxic activity using MTT assay against PC-3 cell lines. While, both S. yapa leaves and pollen grains-derived extracts and S. causiarum pollen grains-derived extracts were active against A-172 cell line. OPLS-DA models was generated, to putatively determine the most active cytotoxic metabolites, these models suggested that alkaloids, flavonoids and phenolic acids are the most important metabolites in the active extracts. In silico analysis (neural-networking-based activity prediction and docking studies) of these top-scoring metabolites further supported OPLS-DA models predictability. This study could be considered as primary step in the in-depth exploration of bioactive natural products from Sabal.


Assuntos
Extratos Vegetais , Serenoa , Egito , Compostos Fitoquímicos/análise , Extratos Vegetais/análise , Extratos Vegetais/farmacologia , Folhas de Planta/química
20.
Antioxidants (Basel) ; 10(12)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34942963

RESUMO

The olive tree is a venerable Mediterranean plant and often used in traditional medicine. The main aim of the present study was to evaluate the effect of Olea europaea L. cv. Arbosana leaf extract (OLE) and its encapsulation within a spanlastic dosage form on the improvement of its pro-oxidant and antiproliferative activity against HepG-2, MCF-7, and Caco-2 human cancer cell lines. The LC-HRESIMS-assisted metabolomic profile of OLE putatively annotated 20 major metabolites and showed considerable in vitro antiproliferative activity against HepG-2, MCF-7, and Caco-2 cell lines with IC50 values of 9.2 ± 0.8, 7.1 ± 0.9, and 6.5 ± 0.7 µg/mL, respectively. The encapsulation of OLE within a (spanlastic) nanocarrier system, using a spraying method and Span 40 and Tween 80 (4:1 molar ratio), was successfully carried out (size 41 ± 2.4 nm, zeta potential 13.6 ± 2.5, and EE 61.43 ± 2.03%). OLE showed enhanced thermal stability, and an improved in vitro antiproliferative effect against HepG-2, MCF-7, and Caco-2 (IC50 3.6 ± 0.2, 2.3 ± 0.1, and 1.8 ± 0.1 µg/mL, respectively) in comparison to the unprocessed extract. Both preparations were found to exhibit pro-oxidant potential inside the cancer cells, through the potential inhibitory activity of OLE against glutathione reductase and superoxide dismutase (IC50 1.18 ± 0.12 and 2.33 ± 0.19 µg/mL, respectively). These inhibitory activities were proposed via a comprehensive in silico study to be linked to the presence of certain compounds in OLE. Consequently, we assume that formulating such a herbal extract within a suitable nanocarrier would be a promising improvement of its therapeutic potential.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA