Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Physiol Pharmacol ; 74(5)2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38085521

RESUMO

Clove plant (Syzygium aromaticum) is one of the Myrtaceae family. It's a common flavor in food and the traditional medicine. The study's objective was to ascertain whether the clove bud aqueous extract (CAE) and CAE + nanosilver have any biological effects on immune cells and HT-29 colon cancer cell line. Nanosilver was produced through green synthesis approach using CAE. Produced nanosilver was characterized via electron microscope (scanning, SEM) and ultraviolet-visible spectroscopy. CAE and CAE + nanosilver were examined for their active biomolecules using FTIR analysis, p53 contents using real-time PCR, apoptosis and cell cycle arrest power on HT-29 cancer cell line via flow cytometerty and immunomodulatory potential utilizing MTT assay. Results cleared that a spherical nanosilver with a diameter range of 53 nm was formed by CAE. There were several active biomolecules in CAE and CAE + nanosilver. CAE and CAE + nanosilver increased the p53 protein expression and apoptotic cell number in HT-29 colon cancer cells. CAE and CAE + nanosilver could arrest HT-29 cells at the phase G2/M. CAE and CAE + nanosilver stimulated quiescent and PHA-pre-treated splenic cells at higher concentrations, and CAE suppressed quiescent splenic cell when diluted. In conclusion, the safe edible Syzygium aromaticum plant can be utilized to make anti-tumor agent, essentially for colon tumor. As Syzygium aromaticum plant could stimulate immune cells, it can be used as immune-stimulatory agent that can help fight tumor and tumor development.


Assuntos
Neoplasias do Colo , Nanopartículas Metálicas , Syzygium , Humanos , Prata/farmacologia , Prata/química , Syzygium/química , Proteína Supressora de Tumor p53 , Extratos Vegetais/farmacologia , Extratos Vegetais/química
2.
J Chem Phys ; 159(20)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38010333

RESUMO

Semiconductor-based photocatalysts have become increasingly used in the removal of pollutants from wastewater, especially antibiotics. A series of composite-based cuprous oxide and bismuth vanadate (Cu2O/BiVO4) composite-based photocatalysts were synthesized by using the chemical method. The structure of the Cu2O/BiVO4 composite was verified by using x-ray diffraction, scanning electron microscopy, photoluminescence, Fourier transform infrared spectroscopy, and UV-visible spectra. The degradation of methylene blue (MB) and tetracycline (TC) was investigated to check the photocatalytic activity of the Cu2O/BiVO4 composite series. The quantity of Cu2O was varied from 1% to 7% by weight to prepare the series of Cu2O/BiVO4 composites. The analysis of results verified that 5% Cu2O/BiVO4 exhibits an outstanding photocatalytic activity as compared to 1%, 3%, and 7% Cu2O/BiVO4, pure Cu2O, and pure BiVO4 under visible light irradiation. The optimum value of photocatalytic degradation achieved with 5% Cu2O/BiVO4 was 97% for MB dye and 95% for TC in 120 min, which is greater than the photocatalytic degradation of pure BiVO4 (MB 45% and TC 72%), pure Cu2O (MB 57% and TC 80%), 1% Cu2O/BiVO4 (MB 72% and TC 85%), 3% Cu2O/BiVO4 (MB 83% and TC 88%), and 7% Cu2O/BiVO4 (MB 87% and TC 91%). The stability and reusability of Cu2O/BiVO4 were also investigated. To check the major role of trapping in degradation, a trapping experiment was also performed by using three trapping agents: BQ, EDTA, and tBuOH. The results showed that Cu2O/BiVO4 exhibits an improved photocatalytic activity in the degradation of antibiotics in polluted water because the recombination rate of the electron-hole pair decreased and the surface area increased, which increased the active sites for redox reactions. Such a photocatalytic composite with high efficiency has various applications, such as energy production, environmental remediation, and water remediation.

3.
Sci Rep ; 13(1): 18315, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880216

RESUMO

Silicon (Si) and/or proline (Pro) are natural supplements that are considered to induce plants' stress tolerance against various abiotic stresses. Sweet corn (Zea mays L. saccharata) production is severely afflicted by salinity stress. Therefore, two field tests were conducted to evaluate the potential effects of Si and/or Pro (6mM) used as seed soaking (SS) and/or foliar spray (FS) on Sweet corn plant growth and yield, physio-biochemical attributes, and antioxidant defense systems grown in a saline (EC = 7.14dS m-1) soil. The Si and/or Pro significantly increased growth and yield, photosynthetic pigments, free proline, total soluble sugars (TSS), K+/Na+ratios, relative water content (RWC), membrane stability index (MSI), α-Tocopherol (α-TOC), Ascorbate (AsA), glutathione (GSH), enzymatic antioxidants activities and other anatomical features as compared to controls. In contrast, electrolytes, such as SS and/or FS under salt stress compared to controls (SS and FS using tap water) were significantly decreased. The best results were obtained when SS was combined with FS via Si or Pro. These alterations are brought about by the exogenous application of Si and/or Pro rendering these elements potentially useful in aiding sweet corn plants to acclimate successfully to saline soil.


Assuntos
Antioxidantes , Zea mays , Antioxidantes/farmacologia , Silício/farmacologia , Prolina/farmacologia , Estresse Salino , Glutationa , Água , Solo/química
4.
Front Plant Sci ; 14: 1144319, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37123831

RESUMO

Introduction: Osmoprotectant supplementation can be used as a useful approach to enhance plant stress tolerance. However, the effect of silymarin and clove fruit extract (CFE) on wheat plants grown under cadmium (Cd) stress has not been studied. Methods: Wheat seeds were planted in plastic pots filled with ions-free sand. A ½-strength Hoagland's nutrient solution was used for irrigation. Pots were treated with eight treatments thirteen days after sowing: 1) Control, 2) 0.5 mM silymarin foliar application [silymarin], 3) 2% CFE foliar application [CFE], 4) CFE enriched with silymarin (0.24 g silymarin L-1 of CFE) [CFE-silymarin], 5) Watering wheat seedlings with a nutritious solution of 2 mM Cd [Cd]. 6) Cadmium + silymarin, 7) Cadmium + CFE, and 8) Cadmium + CFE-silymarin. The experimental design was a completely randomized design with nine replicates. Results and discussion: The Cd stress decreased grain yield, shoot dry weight, leaf area, carotenoids, chlorophylls, stomatal conductance, net photosynthetic rate, transpiration rate, membrane stability index, nitrogen, phosphorus, and potassium content by 66.9, 60.6, 56.7, 23.8, 33.5, 48.1, 41.2, 48.7, 42.5, 24.1, 39.9, and 24.1%, respectively. On the other hand, Cd has an Application of CFE, silymarin, or CEF-silymarin for wheat plants grown under Cd stress, significantly improved all investigated biochemical, morphological, and physiological variables and enhanced the antioxidant enzyme activities. Applying CFE and/or silymarin enhanced plant tolerance to Cd stress more efficiently. Our findings suggest using CFE-silymarin as a meaningful biostimulator for wheat plants to increase wheat plants' tolerance to Cd stress via enhancing various metabolic and physiological processes.

5.
Ultrason Sonochem ; 95: 106382, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37031535

RESUMO

BACKGROUND: This study, for the first time, reports a simultaneous determination of flavonoids; rutin (RT), quercetin (QT), luteolin (LT), and kaempferol (KF) in different origins of fenugreek seeds samples (N = 45) using a green UHPLC-DAD analysis METHODOLOGY: Ultrasound-assisted extraction (UAE) was employed to extract fenugreek flavonoids using different polarity solvents of n-hexane (n-hex), dichloromethane (DCM), and methanol (MeOH) RESULTS: The extract yield on an individual basis was observed in the range of 1.03-17.29 mg, with the highest yield (mg/sample) for the Egyptian sample (17.29 mg). The highest total extract yield (mg/origin) was observed for the Iranian sample (82.28 ±â€¯5.38). The solvent with the highest extract yield (mg) was n-hex 169.35 ±â€¯13.47, followed by MeOH 114.39 ±â€¯12.27. The validated green UHPLC-DAD method resulted in a short runtime (9 min) with an accuracy of 97.86(±12.32)-101.37(±5.91), r2-values = 0.993-0.999, LOD = 2.09-4.48 ppm, and LOQ = 6.33-13.57 ppm for flavonoids analysis within the linearity range of 1-500 ppm. The general yield for flavonoids exhibited a descending order (ppm): RT (2924.55 ±â€¯143.84) > QT (457.05 ±â€¯34.07) > LT (82.37 ±â€¯3.27) > KF (4.54 ±â€¯0.00). The yield (ppm) for the flavonoids was more in MeOH solvent (3424.81 ±â€¯235.44) constructing a descending order of MeOH > n-hex > DCM. For an individual flavonoid yield; MeOH was seen with an order of RT > QT > LT, n-hex (LT > QT), and DCM (RT > LT > QT). The statistical analysis of PCA (principle component analysis) revealed a widespread distribution of flavonoids in fenugreek seeds with a variance of 35.93% (PC1). Moreover, flavonoids extraction was prone to the nature and specificity of the solvent used (PC2: 33.34%) rather than the amount of the extract yield (P = 0.00). The K-mean cluster analysis showed the origins with higher flavonoids yield in appropriate solvent as I3M (Indian accession # 3 MeOH extract) with more QT amount, IR2M (Iranian accession # 2 MeOH extract) with more LT amount along with I2M (Indian accession # 2 MeOH extract) and Q2M (Qassim Saudi Arabia accession # 2 MeOH extract) containing high amount of RT. The outcomes are supported by KMO (Kaiser-Meyer-Olkin) and Bartlett's test value of 0.56 with X2-value of 191.87 (P = 0.00) CONCLUSION: The samples were effectively evaluated and standardized in terms of flavonoid amount suggesting a significant variation in fenugreek quality.


Assuntos
Flavonoides , Trigonella , Flavonoides/análise , Cromatografia Líquida de Alta Pressão/métodos , Ultrassom , Irã (Geográfico) , Extratos Vegetais , Quercetina/análise , Rutina/análise , Solventes , Metanol
6.
Foods ; 12(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37048178

RESUMO

Colored wheats such as black, blue, or purple wheat are receiving a great interest as healthy food ingredients due to their potential health-enhancing attributes. Purple wheat is an anthocyanin-pigmented grain that holds huge potential in food applications since wheat is the preferred source of energy and protein in human diet. Purple wheat is currently processed into a variety of foods with potent antioxidant properties, which have been demonstrated by in vitro studies. However, the health impacts of purple wheat foods in humans still require further investigations. Meanwhile, anthocyanins are vulnerable molecules that require special stabilization treatments during food preparation and processing. A number of stabilization methods such as co-pigmentation, self-association, encapsulation, metal binding, and adjusting processing conditions have been suggested as a means to diminish the loss of anthocyanins in processed foods and dietary supplements. The present review was intended to provide insights about purple wheat food product development and its roles in human health. In addition, methods for stabilizing anthocyanins during processing were briefly discussed.

7.
BMC Oral Health ; 23(1): 197, 2023 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-37009877

RESUMO

BACKGROUND: Deterioration in shear bond strength has been reported after immediate bracket bonding following hydrogen peroxide bleaching. This study compared the effectiveness of three antioxidant agents, namely, alpha-tocopherol, green tea extract, and sodium ascorbate, in reversing the bleaching effect and as possible alternatives to delayed bonding. METHODS: A total of 105 extracted human premolars were arbitrarily assigned to 7 groups (n = 15 each), including group 1 as the unbleached control group and six experimental groups, which were bleached with 40% hydrogen peroxide in three sessions of 15 min each. In experimental group 2, bonding was performed immediately after bleaching, whereas in groups 3 and 4, bonding was delayed for 1 and 2 weeks, respectively; meanwhile, the specimens were immersed in artificial saliva at 37 °C. Groups 5, 6, and 7 were treated immediately after bleaching with 10% of alpha-tocopherol, green tea extract, and sodium ascorbate solutions, respectively, for 15 min. Specimens were processed using 500 thermal cycles between 5 and 55 °C, with a dwell time of 30 s after 24 h of bracket bonding, and then tested for shear bond strength. The adhesive remnant index was examined to evaluate fracture mode. One-way analysis of variance, Kruskal-Wallis H, and post hoc Tukey's honestly significant difference tests were used to compare the data. Significant results were subjected to pairwise comparisons with Bonferroni's correction-adjusted of p values ≤ 0.050. RESULTS: Shear bond strength was significantly lower (p < 0.001) in the immediate bonding and 1-week delay groups than in the control group. However, no significant difference was detected among the 2-week delay, antioxidant-treated, and control groups (p > 0.05). CONCLUSIONS: Application of 10% alpha-tocopherol, green tea extract, or sodium ascorbate for 15 min could restore shear bond strength after 40% hydrogen peroxide bleaching as an alternative to delay in bracket bonding.


Assuntos
Colagem Dentária , Braquetes Ortodônticos , Clareamento Dental , Humanos , Antioxidantes , Peróxido de Hidrogênio , alfa-Tocoferol , Colagem Dentária/métodos , Esmalte Dentário , Cimentos Dentários , Ácido Ascórbico , Resistência ao Cisalhamento , Chá
8.
J Environ Sci (China) ; 129: 240-257, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36804239

RESUMO

Plants have to cope with several abiotic stresses, including salinity and heavy metals (HMs). Under these stresses, several extracts have been used as effective natural biostimulants, however, the use of Spirulina platensis (SP) extract (SPE) remains elusive. The effects of SPE were evaluated as soil addition (SA) and/or foliar spraying (FS) on antioxidant defenses and HMs content of common bean grown in saline soil contaminated with HMs. Individual (40 or 80 mg SPE/hill added as SA or 20 or 40 mg SPE/plant added as FS) or integrative (SA+FS) applications of SPE showed significant improvements in the following order: SA-80+FS-40 > SA-80+FS-20 > SA-40+FS-40 > SA-40+FS-20 > SA-80 > SA-40 > FS-40 > FS-20 > control. Therefore, the integrative SA+FS with 40 mg SP/plant was the most effective treatment in increasing plant growth and production, overcoming stress effects and minimizing contamination of the edible part. It significantly increased plant growth (74%-185%) and yield (107%-227%) by enhancing net photosynthetic rate (78.5%), stomatal conductance (104%), transpiration rate (124%), and contents of carotenoids (60.0%), chlorophylls (49%-51%), and NPK (271%-366%). These results were concurrent with the marked reductions in malondialdehyde (61.6%), hydrogen peroxide (42.2%), nickel (91%-94%), lead (80%-9%), and cadmium (74%-91%) contents due to the improved contents of glutathione (87.1%), ascorbate (37.0%), and α-tocopherol (77.2%), and the activities of catalase (18.1%), ascorbate peroxidase (18.3%), superoxide dismutase (192%), and glutathione reductase (52.2%) as reinforcing mechanisms. Therefore, this most effective treatment is recommended to mitigate the stress effects of salinity and HMs on common bean production while minimizing HMs in the edible part.


Assuntos
Metais Pesados , Phaseolus , Metais Pesados/farmacologia , Antioxidantes , Solo , Extratos Vegetais/farmacologia
9.
Sci Rep ; 12(1): 20692, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36450738

RESUMO

The flow of a fluid across a revolving disc has several technical and industrial uses. Examples of rotating disc flows include centrifugal pumps, viscometers, rotors, fans, turbines, and spinning discs. An important technology with implications for numerous treatments utilized in numerous sectors is the use of hybrid nanofluids (HNFs) to accelerate current advancements. Through investigation of ternary nanoparticle impacts on heat transfer (HT) and liquid movement, the thermal properties of tri-HNFs were to be ascertained in this study. Hall current, thermal radiation, and heat dissipation have all been studied in relation to the use of flow-describing equations. The ternary HNFs under research are composed of the nanomolecules aluminum oxide (Al2O3), copper oxide (CuO), silver (Ag), and water (H2O). For a number of significant physical characteristics, the physical situation is represented utilizing the boundary layer investigation, which produces partial differential equations (PDEs). The rheology of the movement is extended and computed in a revolving setting under the assumption that the movement is caused by a rotatingfloppy. Before the solution was found using the finite difference method, complicated generated PDEs were transformed into corresponding ODEs (Keller Box method). A rise in the implicated influencing factors has numerous notable physical impacts that have been seen and recorded. The Keller Box method (KBM) approach is also delivered for simulating the determination of nonlinear system problems faced in developing liquid and supplementary algebraic dynamics domains. The rate of entropy formation rises as the magnetic field parameter and radiation parameter increase. Entropy production rate decreases as the Brinkman number and Hall current parameter become more enriched. The thermal efficiency of ternary HNFs compared to conventional HNFs losses to a low of 4.8% and peaks to 5.2%.

10.
Molecules ; 27(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36235212

RESUMO

Tea is the first most popular beverage worldwide and is available in several selections such as black (fully oxidized), Oolong (partially oxidized) and green (non-oxidized), in addition to purple tea, an emerging variety derived from the same tea plant (Camellia sinensis). This study investigated purple tea leaves (non-oxidized) and flakes (water extractable) to thoroughly identify their composition of anthocyanins and catechins and to study the effect of a water extraction process on their compositional properties in comparison with green tea. Anthocyanin and catechin compounds were separated and quantified using UPLC, and their identity was confirmed using LC-MS/MS in positive and negative ionization modes. Delphinidin was the principal anthocyaninidin in purple tea, while cyanidin came in second. The major anthocyanin pigments in purple tea were delphinidin-coumaroyl-hexoside followed by delphinidin-3-galactoside and cyanidin-coumaroyl-hexoside. The water extraction process resulted in substantial reductions in anthocyanins in purple tea flakes. There were no anthocyanin compounds detected in green tea samples. Both purple and green tea types were rich in catechins, with green tea containing higher concentrations than purple tea. The main catechin in purple or green tea was epigallocatechin gallate (EGCG) followed by either epicatechin gallate (ECG) or epigallocatechin (EGC), subject to tea type. The extraction process increased the concentration of catechins in both purple and green tea flakes. The results suggest that purple tea holds promise in making healthy brews, natural colorants and antioxidants and/or functional ingredients for beverages, cosmetics and healthcare industries due to its high content of anthocyanins and catechins.


Assuntos
Camellia sinensis , Catequina , Antocianinas , Catequina/análise , Cromatografia Líquida , Galactosídeos , Folhas de Planta/química , Espectrometria de Massas em Tandem , Chá , Água
11.
Antioxidants (Basel) ; 11(10)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36290683

RESUMO

Saussurea costus is a medicinal plant with different bioactive compounds that have an essential role in biomedicine applications, especially in Arab nations. However, traditional extraction methods for oils can lead to the loss of some volatile and non-volatile oils. Therefore, this study aimed to optimize the supercritical fluid extraction (SFE) of oils from S. costus at pressures (10, 20, and 48 MPa). The results were investigated by GC/MS analysis. MTT, DPPH, and agar diffusion methods assessed the extracted oils' anticancer, antioxidant, and antimicrobial action. GC/MS results showed that elevated pressure from 10 to 20 and 48 MPa led to the loss of some valuable compounds. In addition, the best IC50 values were recorded at 10 MPa on HCT, MCF-7, and HepG-2 cells at about 0.44, 0.46, and 0.74 µg/mL, respectively. In contrast, at 20 MPa, the IC50 values were about 2.33, 6.59, and 19.0 µg/mL, respectively, on HCT, MCF-7, and HepG-2 cells, followed by 48 MPa, about 36.02, 59.5, and 96.9 µg/mL. The oil extract at a pressure of 10 MPa contained much more of á-elemene, dihydro-à-ionone, patchoulene, á-maaliene, à-selinene, (-)-spathulenol, cedran-diol, 8S,13, elemol, eremanthin, á-guaiene, eudesmol, ç-gurjunenepoxide-(2), iso-velleral, and propanedioic acid and had a higher antioxidant activity (IC50 14.4 µg/mL) more than the oil extract at 20 and 48 MPa. In addition, the inhibitory activity of all extracts was higher than gentamicin against all tested bacteria. One of the more significant findings from this study is low pressure in SFE enhancement, the extraction of oils from S. costus, for the first time. As a result, the SFE is regarded as a good extraction technique since it is both quick and ecologically friendly. Furthermore, SFE at 10 MPa increased the production and quality of oils, with high antioxidant activity and a positive effect on cancer cells and pathogens.

12.
J Genet Eng Biotechnol ; 20(1): 93, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35776276

RESUMO

BACKGROUND: Synthesized gallium nanoparticles synthesized by grape seed extract were characterized with spherical shape and size range less than100 nm, possessing the functional groups of the biological material. The purpose of this study is to evaluate gallium nanoparticles synthesized by grape seed extract, as an antitumor agent with low dose of γ-radiation against hepatocellular carcinoma in rats. AIM OF WORK: This work aimed to evaluate the antitumor effect of gallium nanoparticles synthesized (GaNPs) by grape seed extract and the co-binded treatment with low dose of γ-radiation on hepatocellular carcinoma in rats, through evaluating their effect on signaling pathways and tumor markers. RESULTS: Cytotoxic activity of GaNPs synthesized by grape seed extract was estimated by mediated cytotoxicity assay on HepG2 cell line that recorded IC50 of 388.8 µg/ml. To achieve these goals, eighty Wistar male rats (120-150 g) will be divided into eight groups, each of 10 rats. The animals are administered with diethylnitrosamine to induce hepatocellular carcinoma and then orally administered with GaNPs synthesized by grape seed extract (38.5 mg/kg) in combination with the exposure of the total body to a low dose of γ-radiation (0.5 Gy). The treatment modulated plasma vascular endothelial growth factor and alpha-fetoprotein. In addition, the immunoblotting results of nuclear factor-kappa beta showed a marked downregulation of extracellular signal-regulated kinase, mitogen-activated protein kinase, and c-Jun NH2-terminal kinase alongside, significantly elevating the level of Sirtuin-3 and caspase-3. CONCLUSIONS: It can be concluded that the combined treatment with GaNPs synthesized by grape seed extract and low dose γ-radiation may have antineoplastic activity against hepatocarcinogenesis by inhibiting signal pathways extracellular signal-regulated kinase/mitogen-activated protein kinase/c-Jun NH2-terminal kinase and stimulating apoptotic protein.

13.
Molecules ; 27(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35684450

RESUMO

Five potato varieties were studied using an electronic nose with nine MOS sensors. Parameters measured included carbohydrate content, sugar level, and the toughness of the potatoes. Routine tests were carried out while the signals for each potato were measured, simultaneously, using an electronic nose. The signals obtained indicated the concentration of various chemical components. In addition to support vector machines (SVMs that were used for the classification of the samples, chemometric methods, such as the partial least squares regression (PLSR) method, the principal component regression (PCR) method, and the multiple linear regression (MLR) method, were used to create separate regression models for sugar and carbohydrates. The predictive power of the regression models was characterized by a coefficient of determination (R2), a root-mean-square error of prediction (RMSEP), and offsets. PLSR was able to accurately model the relationship between the smells of different types of potatoes, sugar, and carbohydrates. The highest and lowest accuracy of models for predicting sugar and carbohydrates was related to Marfona potatoes and Sprite cultivar potatoes. In general, in all cultivars, the accuracy in predicting the amount of carbohydrates was somewhat better than the accuracy in predicting the amount of sugar. Moreover, the linear function had 100% accuracy for training and validation in the C-SVM method for classification of five potato groups. The electronic nose could be used as a fast and non-destructive method for detecting different potato varieties. Researchers in the food industry will find this method extremely useful in selecting the desired product and samples.


Assuntos
Solanum tuberosum , Carboidratos/análise , Quimiometria , Análise dos Mínimos Quadrados , Açúcares
14.
Front Plant Sci ; 13: 1081624, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36714741

RESUMO

In recent decades, environmental pollution with chromium (Cr) has gained significant attention. Although chromium (Cr) can exist in a variety of different oxidation states and is a polyvalent element, only trivalent chromium [Cr(III)] and hexavalent chromium [Cr(VI)] are found frequently in the natural environment. In the current review, we summarize the biogeochemical procedures that regulate Cr(VI) mobilization, accumulation, bioavailability, toxicity in soils, and probable risks to ecosystem are also highlighted. Plants growing in Cr(VI)-contaminated soils show reduced growth and development with lower agricultural production and quality. Furthermore, Cr(VI) exposure causes oxidative stress due to the production of free radicals which modifies plant morpho-physiological and biochemical processes at tissue and cellular levels. However, plants may develop extensive cellular and physiological defensive mechanisms in response to Cr(VI) toxicity to ensure their survival. To cope with Cr(VI) toxicity, plants either avoid absorbing Cr(VI) from the soil or turn on the detoxifying mechanism, which involves producing antioxidants (both enzymatic and non-enzymatic) for scavenging of reactive oxygen species (ROS). Moreover, this review also highlights recent knowledge of remediation approaches i.e., bioremediation/phytoremediation, or remediation by using microbes exogenous use of organic amendments (biochar, manure, and compost), and nano-remediation supplements, which significantly remediate Cr(VI)-contaminated soil/water and lessen possible health and environmental challenges. Future research needs and knowledge gaps are also covered. The review's observations should aid in the development of creative and useful methods for limiting Cr(VI) bioavailability, toxicity and sustainably managing Cr(VI)-polluted soils/water, by clear understanding of mechanistic basis of Cr(VI) toxicity, signaling pathways, and tolerance mechanisms; hence reducing its hazards to the environment.

15.
Int J Biol Macromol ; 193(Pt B): 2029-2037, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34774591

RESUMO

Every year, about 1 out of 9 get burnt in Egypt, with a mortality rate of 37%, and they suffer from physical disfigurement and trauma. For the treatment of second-degree burns, we aim at making a smart bandage provided with control of drug release (using chitosan nanoparticles) to enhance the healing process. This bandage is composed of natural materials; namely, cellulose acetate (CA), chitosan, and propolis (bee resin) as the loaded drug. Cellulose acetate nanofibers were deacetylated by NaOH after optimizing the reaction time and the concentration of NaOH solution, and the product was confirmed with FTIR analysis. Chitosan/propolis nanoparticles were prepared by ion gelation method with size ranging from 100 to 200 nm and a polydispersity index of 0.3. Chitosan/propolis nanoparticles were preloaded in the CA solution to ensure homogeneity. Loaded deacetylated cellulose nanofibers have shown the highest hydrophobicity measured by contact angle. Cytotoxicity of propolis and chitosan/propolis nanoparticles were tested and the experimental IC50 value was about 137.5 and 116.0 µg/mL, respectively, with p-value ≤0.001. In addition, chitosan/propolis nanoparticles loaded into cellulose nanofibers showed a cell viability of 89.46% in the cell viability test. In-vivo experiments showed that after 21 days of treatment with the loaded nanofibers repairing of epithelial cells, hair follicles and sebaceous glands in the skin of the burn wound were found in albino-mice model.


Assuntos
Queimaduras/tratamento farmacológico , Celulose/análogos & derivados , Quitosana/farmacologia , Nanofibras/química , Nanopartículas/química , Própole/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Bandagens , Sobrevivência Celular/efeitos dos fármacos , Celulose/química , Quitosana/química , Egito , Masculino , Camundongos , Própole/química , Pele/efeitos dos fármacos
16.
Dokl Biochem Biophys ; 499(1): 289-295, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34426928

RESUMO

Occupational and environmental exposure to chromium compounds leads to nephrotoxicity to humans and animals due to the overproduction of ROS. Our study was aimed to demonstrate the shielding effect of hydroethanolic extract of Ipomoea staphylina (HEIS) bark on male Wistar rats challenged with potassium dichromate (K2Cr2O7). Division of animals was done in 4 groups' viz., normal control, K2Cr2O7 control, K2Cr2O7+HEIS (100 mg/kg), and K2Cr2O7+HEIS (200 mg/kg). Except for the normal control group, other groups were challenged with a single dose (subcutaneous) of K2Cr2O7 (15 mg/kg) and then treated with HEIS (100 and 200 mg/kg) for 1 week. It was observed that animals treated with K2Cr2O7 showed a notable increase in serum creatinine, blood urea, and BUN and dwindles in protein level. These changes were significantly reversed after a 1-week treatment with HEIS (100 and 200 mg/kg). Moreover, HEIS (100 and 200 mg/kg) showed a remarkable improvement in the activity of antioxidant enzymes (GPx, CAT, and SOD) and decreased the levels of TNF-α and IL-1ß in the kidney. Furthermore, treatment with HEIS (100 and 200 mg/kg) notably decreased the activity of caspase-3 and improved the level of HO-1 especially in the K2Cr2O7+ HEIS (200 mg/kg) group. Also, the histopathological study of the kidney supported the protective effects of HEIS. Hence, HEIS bark holds a notable protective effect against K2Cr2O7-induced nephrotoxicity in rats.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Ipomoea/química , Rim/efeitos dos fármacos , Extratos Vegetais/farmacologia , Dicromato de Potássio/toxicidade , Animais , Catalase/metabolismo , Rim/citologia , Rim/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar
17.
Saudi J Biol Sci ; 28(8): 4461-4471, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34354431

RESUMO

Fusarium species threaten wheat crops around the world and cause global losses. The global trend is toward using biological materials such as selenium (Se) in nano form to control these fungi. Bulk selenium is toxic and harmful at high doses; however, selenium nanoparticles are safe; therefore, the aim of this study to employ the biological selenium nanoparticles (BioSeNPs) synthesized by Lactobacillus acidophilus ML14 in controlling wheat crown and root rot diseases (CRDs) induced by Fusarium spp., especially Fusarium culmorum and Fusarium graminearum, and their reflection on the growth and productivity of wheat. The ability of BioSeNPs to suppress the development and propagation of F. culmorum and F. graminearum and the CRDs incidence were also investigated. The obtained BioSeNPs were spherical with a size of 46 nm and a net charge of -23.48. The BioSeNPs significantly scavenged 88 and 92% of DPPH and ABTS radicals and successfully inhibited the fungal growth in the range of 20-40 µg/mL; these biological activities were related to the small size of BioSeNPs and the phenolic content in their suspension. Under greenhouse conditions, the wheat supplemented with BioSeNPs (100 µg/mL) was significantly reduced the incidence of CRDs by 75% and considerably enhanced plant growth, grain quantity and quality by 5-40%. Also, photosynthetic pigments and gas exchange parameters were significantly increased as compared to chemical selenium nanoparticles (Che-SeNPs) and control. This study results could be recommended the use of BioSeNPs (100 µg/mL) in reducing CRDs incidence and severity in wheat plants, enhancing their tolerance with drought and heat stress, and increasing their growth and productivity as compared to control and Che-SeNPs.

18.
Neurochem Res ; 46(9): 2238-2248, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34036518

RESUMO

Previous studies have shown that testosterone attenuates stress-induced mood dysfunction and memory deterioration. However, the exact mechanism is still unknown. This study was conducted to investigate the role of long-term testosterone undecanoate on the behavioral responses in AD induced by AlCl3 + D-galactose administration and the possible alteration of the gene expression level of the Na/K ATPase pump. Adult male mice received AlCl3 in drinking water (10 mg/kg/day) and (D-gal 200 mg/kg/day), subcutaneously for 90 consecutive days, then received a single intramuscular (I.M) injection of castor oil (vehicle) on day 91, while treated groups received a single I.M injection of either low (100 mg/kg/45 days) or high dose (500 mg/kg/45 days) respectively of long-acting testosterone undecanoate on day 91. The time spent in the interaction zone during the open field test, preference index to novel objects in the novel object recognition test, spontaneous alternation percentage (SAP) in Y-maze test, and escape latency time in the Morris water maze test were used to measure the locomotor activity, long-term memory, and spatial memory in mice, respectively. The results showed that testosterone undecanoate treatment improved locomotor activity, improved preference to novel objects, improved spatial memory, and reversed anxiety and depression induced by AlCl3 + D-galactose administration in male mice, suggesting the enhancement of behavioral and memory functions brought by testosterone treatment. Moreover, testosterone undecanoate treatment did alter gene expression levels of Na/K ATPase isoforms in the brain hippocampus. In most cases, altered gene expression was significant and correlated with the observed behavioral changes. Taken together, our findings provide new insight into the effects of long-acting testosterone undecanoate administration on locomotor activity, long-term memory, anxiety, and spatial memory in male mice with Alzheimer's disease.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , RNA Mensageiro/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Testosterona/análogos & derivados , Cloreto de Alumínio , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/metabolismo , Animais , Ansiedade/induzido quimicamente , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Depressão/metabolismo , Galactose , Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Camundongos , Teste do Labirinto Aquático de Morris/efeitos dos fármacos , Teste de Campo Aberto/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/genética , Memória Espacial/efeitos dos fármacos , Testosterona/uso terapêutico
19.
Biomolecules ; 11(3)2021 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-33801090

RESUMO

For maize, the potential preventive role of foliar spraying with an extract derived from maize grain (MEg, 2%), silymarin (Sm, 0.5 mM), or silymarin-enriched MEg (MEg-Sm) in attenuating the stress effects of cadmium (Cd, 0.5 mM) was examined using a completely randomized design layout. Under normal conditions, foliar spraying with MEg, Sm, or MEg-Sm was beneficial (with MEg-Sm preferred) for maize plants, whereas the benefit was more pronounced under Cd stress. The use of Cd through irrigation water decreased plant growth traits, photosynthetic efficiency, including instantaneous carboxylation efficiency, Fv/Fm, and pigment contents, and hormonal contents (e.g., auxin, gibberellins, cytokinins including trans-zeatin, and salicylic acid). These undesired findings were due to an increase in Cd content, leading to increased levels of oxidative stress (O2•- and H2O2), ionic leakage, and lipid peroxidation. Therefore, this damage resulted in an increase in the activities of nonenzymatic antioxidants, Sm, antioxidative enzymes, and enzyme gene expression. However, under Cd stress, although foliar spray with MEg or Sm had better findings than control, MEg-Sm had better findings than MEg or Sm. Application of MEg-Sm greatly increased photosynthesis efficiency, restored hormonal homeostasis, and further increased the activities of various antioxidants, Sm, antioxidative enzymes, and enzyme gene expression. These desired findings were due to the suppression of the Cd content, and thus the levels of O2•-, H2O2, ionic leakage, and lipid peroxidation, which were positively reflected in the growth and accumulation of dry matter in maize plants. The data obtained in this study recommend applying silymarin-enriched maize grain extract (MEg-Sm at 0.24 g Sm L-1 of MEg) as a spray solution to maize plants when exposed to excess Cd in soil or irrigation water.


Assuntos
Cádmio/toxicidade , Extratos Vegetais/farmacologia , Silimarina/farmacologia , Zea mays/efeitos dos fármacos , Zea mays/metabolismo , Antioxidantes/metabolismo , Clorofila/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos
20.
Ecotoxicol Environ Saf ; 209: 111839, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33385682

RESUMO

Potato is considered a nitrogen (N) intensive plant with a low N use efficiency (NUE). The current study introduced an excellent approach by combining dicyandiamide (DCD), moringa seed oil (MSO), or zeolite (ZE), with N fertilizer for maximizing potato tuber yields and NUE as well as minimizing tubers nitrate (NO3-) accumulation. The impact of these materials on soil N availability and gaseous emissions (NH3, and N2O) was investigated under incubation conditions. A 2-year field experiment were carried out with seven treatments [without N (control), N fertilizer (350 kg N-urea ha-1 as a recommended dose; UreaRD), 75% of N recommended dose with DCD (Urea75%RD+DCD), Urea75%RD with 2% MSO (Urea75%RD+MSO2%), Urea75%RD with 4% MSO (Urea75%RD+MSO4%), Urea75%RD with 0.5 Mg ZE ha-1 (Urea75%RD+ZER1), and Urea75%RD with 1.0 Mg ZE ha-1 (Urea 75%RD+ZER2)]. We also conducted a 40-days incubation trial with the same treatments; however, urea was added at the rate of 200 mg N kg-1 soil for all treatments, excluding the control. The addition of DCD, MSO, and ZE with urea under incubation conditions delayed the nitrification process, thereby causing a rise in NH4+-N content and a decrease in NO3--N content. Ammonia-oxidizing bacteria (AOB) was inhibited (p ≤ 0.01) in treatments Urea+DCD, Urea+MSO4%, and Urea+ZER2. The highest NUE indexes were recorded in treatment Urea75%RD+DCD. The highest NO3- accumulation (567 mg NO3- kg-1) in potato tubers was recorded in treatment UreaRD. Whilest, the lowest NO3- content (81 mg NO3- kg-1) was in treatment Urea75%RD+DCD. The lowest cumulative N2O emissions and highest cumulative NH3 volatilization were observed in the treatment Urea+DCD under incubation conditions. Our findings demonstrated that N fertilizer rate could be reduced by 25%, while the tuber yields increased with an acceptable limit of NO3- content, resulting in economical, agronomical, and environmental benefits.


Assuntos
Recuperação e Remediação Ambiental/métodos , Fertilizantes/análise , Moringa , Nitratos/metabolismo , Nitrogênio/metabolismo , Zeolitas/química , Agricultura , Amônia/análise , Betaproteobacteria , Guanidinas , Nitrificação , Nitrogênio/análise , Óxidos de Nitrogênio , Solo , Microbiologia do Solo , Solanum tuberosum , Ureia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA