Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Toxins (Basel) ; 13(2)2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499402

RESUMO

The mycotoxin zearalenone (ZEN) is a frequent contaminant of animal feed and is well known for its estrogenic effects in animals. Cattle are considered less sensitive to ZEN than pigs. However, ZEN has previously been shown to be converted to the highly estrogenic metabolite α-zearalenol (α-ZEL) in rumen fluid in vitro. Here, we investigate the metabolism of ZEN in the reticulorumen of dairy cows. To this end, rumen-fistulated non-lactating Holstein Friesian cows (n = 4) received a one-time oral dose of ZEN (5 mg ZEN in 500 g concentrate feed) and the concentrations of ZEN and ZEN metabolites were measured in free rumen liquid from three reticulorumen locations (reticulum, ventral sac and dorsal mat layer) during a 34-h period. In all three locations, α-ZEL was the predominant ZEN metabolite and ß-zearalenol (ß-ZEL) was detected in lower concentrations. ZEN, α-ZEL and ß-ZEL were eliminated from the ventral sac and reticulum within 34 h, yet low concentrations of ZEN and α-ZEL were still detected in the dorsal mat 34 h after ZEN administration. In a second step, we investigated the efficacy of the enzyme zearalenone hydrolase ZenA (EC 3.1.1.-, commercial name ZENzyme®, BIOMIN Holding GmbH, Getzersdorf, Austria) to degrade ZEN to the non-estrogenic metabolite hydrolyzed zearalenone (HZEN) in the reticulorumen in vitro and in vivo. ZenA showed a high ZEN-degrading activity in rumen fluid in vitro. When ZenA was added to ZEN-contaminated concentrate fed to rumen-fistulated cows (n = 4), concentrations of ZEN, α-ZEL and ß-ZEL were significantly reduced in all three reticulorumen compartments compared to administration of ZEN-contaminated concentrate without ZenA. Upon ZenA administration, degradation products HZEN and decarboxylated HZEN were detected in the reticulorumen. In conclusion, endogenous metabolization of ZEN in the reticulorumen increases its estrogenic potency due to the formation of α-ZEL. Our results suggest that application of zearalenone hydrolase ZenA as a feed additive may be a promising strategy to counteract estrogenic effects of ZEN in cattle.


Assuntos
Suplementos Nutricionais , Hidrolases/administração & dosagem , Rúmen/enzimologia , Zearalenona/metabolismo , Ração Animal , Animais , Bovinos , Indústria de Laticínios , Feminino , Microbiologia de Alimentos , Hidrolases/metabolismo , Hidrólise , Inativação Metabólica , Cinética , Masculino , Zeranol/análogos & derivados , Zeranol/metabolismo
2.
Toxins (Basel) ; 10(7)2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30018261

RESUMO

The mycotoxin fumonisin B1 (FB1) is a frequent contaminant of feed. It causes a disruption of sphingolipid metabolism and pulmonary, hepatic, and immunological lesions in pigs depending on the exposure scenario. One sensitive biomarker for FB1 exposure is the sphinganine (Sa) to sphingosine (So) ratio in blood. The fumonisin esterase FumD, which can be used as a feed additive, converts FB1 into the much less toxic metabolite hydrolyzed FB1 (HFB1). We conducted a single-dose study with barrows allocated to one of five treatments: (1) control (feed, 0.9% NaCl intravenously iv), (2) 139 nmol FB1 or (3) HFB1/kg BW iv, (4) 3425 nmol FB1/kg BW orally (po), or (5) 3321 nmol FB1/kg BW and 240 U FumD/kg feed po. The Sa/So ratio of iv and po FB1 administered groups was significantly elevated in blood and Liquor cerebrospinalis, but no fumonisin-associated differences were reflected in other endpoints. Neither clinical lung affections nor histopathological pulmonary lesions were detected in either group, while some parameters of hematology and clinical biochemistry showed a treatment⁻time interaction. FumD application resulted in Sa/So ratios comparable to the control, indicating that the enzymatic treatment was effectively preventing the fumonisin-induced disruption of sphingolipid metabolism.


Assuntos
Suplementos Nutricionais , Esterases/farmacologia , Fumonisinas/toxicidade , Administração Oral , Animais , Biomarcadores , Pulmão/efeitos dos fármacos , Pulmão/patologia , Masculino , Respiração/efeitos dos fármacos , Esfingosina/análogos & derivados , Esfingosina/sangue , Esfingosina/líquido cefalorraquidiano , Suínos
3.
Toxins (Basel) ; 7(3): 791-811, 2015 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-25760079

RESUMO

Under moderate climatic conditions, deoxynivalenol (DON) contamination occurs frequently on cereals. Detoxification measures are required to avoid adverse effects on farm animals. In the present study, a wet preservation method with sodium sulfite (Na2SO3) and propionic acid was tested to titrate the optimum Na2SO3-dose for maximum DON reduction of contaminated maize kernels and meal and to examine the interaction between dose and moisture content in dependence on the preservation duration. The DON concentration decreased with increasing amounts of supplemented Na2SO3 and with increasing duration of the preservation period in a bi-exponential fashion. Additionally, the feed structure and moisture content had a significant influence on the decontaminating effect. Variants with 30% moisture content favored higher DON reduction rates compared to 14% moisture, but especially at low moisture contents, DON reduction was more pronounced in maize kernels than in maize meal. In addition to the decrease of DON, a concomitant formation of three different DON sulfonates was observed which differed in their formation pattern over the time course of preservation. The overall results and statistical analysis clarified that Na2SO3 addition of 10 g/kg maize at 30% moisture for eight days was necessary to obtain a complete DON reduction.


Assuntos
Sulfitos/química , Tricotecenos/análise , Zea mays/microbiologia , Ração Animal/microbiologia , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Fusarium/química , Concentração de Íons de Hidrogênio , Sementes/química , Sementes/microbiologia , Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA