Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur Respir J ; 61(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37105573

RESUMO

BACKGROUND: Electronic cigarette (e-cigarette) vapour is gaining popularity as an alternative to tobacco smoking and can induce acute lung injury. However, the specific role of nicotine in e-cigarette vapour and its long-term effects on the airways, lung parenchyma and vasculature remain unclear. RESULTS: In vitro exposure to nicotine-containing e-cigarette vapour extract (ECVE) or to nicotine-free e-cigarette vapour extract (NF ECVE) induced changes in gene expression of epithelial cells and pulmonary arterial smooth muscle cells (PASMCs), but ECVE in particular caused functional alterations (e.g. a decrease in human and mouse PASMC proliferation by 29.3±5.3% and 44.3±8.4%, respectively). Additionally, acute inhalation of nicotine-containing e-cigarette vapour (ECV) but not nicotine-free e-cigarette vapour (NF ECV) increased pulmonary endothelial permeability in isolated lungs. Long-term in vivo exposure of mice to ECV for 8 months significantly increased the number of inflammatory cells, in particular lymphocytes, compared to control and NF ECV in the bronchoalveolar fluid (BALF) (ECV: 853.4±150.8 cells·mL-1; control: 37.0±21.1 cells·mL-1; NF ECV: 198.6±94.9 cells·mL-1) and in lung tissue (ECV: 25.7±3.3 cells·mm-3; control: 4.8±1.1 cells·mm-3; NF ECV: 14.1±2.2 cells·mm-3). BALF cytokines were predominantly increased by ECV. Moreover, ECV caused significant changes in lung structure and function (e.g. increase in airspace by 17.5±1.4% compared to control), similar to mild tobacco smoke-induced alterations, which also could be detected in the NF ECV group, albeit to a lesser degree. In contrast, the pulmonary vasculature was not significantly affected by ECV or NF ECV. CONCLUSIONS: NF ECV components induce cell type-specific effects and mild pulmonary alterations, while inclusion of nicotine induces significant endothelial damage, inflammation and parenchymal alterations.


Assuntos
Vapor do Cigarro Eletrônico , Sistemas Eletrônicos de Liberação de Nicotina , Pneumonia , Humanos , Animais , Camundongos , Nicotina/efeitos adversos , Vapor do Cigarro Eletrônico/efeitos adversos , Vapor do Cigarro Eletrônico/metabolismo , Pneumonia/etiologia , Pneumonia/metabolismo , Pulmão/metabolismo , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia
2.
Int J Mol Sci ; 22(3)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540939

RESUMO

Pulmonary hypertension (PH) is characterized by a progressive elevation of mean arterial pressure followed by right ventricular failure and death. Previous studies have indicated that numerous inhibitors of receptor tyrosine kinase signaling could be either beneficial or detrimental for the treatment of PH. Here we investigated the therapeutic potential of the multi-kinase inhibitor regorafenib (BAY 73-4506) for the treatment of PH. A peptide-based kinase activity assay was performed using the PamStation®12 platform. The 5-bromo-2'-deoxyuridine proliferation and transwell migration assays were utilized in pulmonary arterial smooth muscle cells (PASMCs). Regorafenib was administered to monocrotaline- and hypoxia-induced PH in rats and mice, respectively. Functional parameters were analyzed by hemodynamic and echocardiographic measurements. The kinase activity assay revealed upregulation of twenty-nine kinases in PASMCs from patients with idiopathic PAH (IPAH), of which fifteen were established as potential targets of regorafenib. Regorafenib showed strong anti-proliferative and anti-migratory effects in IPAH-PASMCs compared to the control PASMCs. Both experimental models indicated improved cardiac function and reduced pulmonary vascular remodeling upon regorafenib treatment. In lungs from monocrotaline (MCT) rats, regorafenib reduced the phosphorylation of c-Jun N-terminal kinase and extracellular signal-regulated kinase 1/2. Overall, our data indicated that regorafenib plays a beneficial role in experimental PH.


Assuntos
Hipertensão Pulmonar/tratamento farmacológico , Compostos de Fenilureia/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/uso terapêutico , Animais , Divisão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hipertensão Pulmonar/enzimologia , Hipertensão Pulmonar/etiologia , Hipóxia/complicações , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Monocrotalina/toxicidade , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Compostos de Fenilureia/farmacologia , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Artéria Pulmonar/citologia , Piridinas/farmacologia , Ratos , Ratos Sprague-Dawley , Remodelação Vascular/efeitos dos fármacos
3.
Lancet Respir Med ; 5(9): 717-726, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28624389

RESUMO

BACKGROUND: Idiopathic and heritable pulmonary arterial hypertension form a rare but molecularly heterogeneous disease group. We aimed to measure and validate differences in plasma concentrations of proteins that are associated with survival in patients with idiopathic or heritable pulmonary arterial hypertension to improve risk stratification. METHODS: In this observational cohort study, we enrolled patients with idiopathic or heritable pulmonary arterial hypertension from London (UK; cohorts 1 and 2), Giessen (Germany; cohort 3), and Paris (France; cohort 4). Blood samples were collected at routine clinical appointment visits, clinical data were collected within 30 days of blood sampling, and biochemical data were collected within 7 days of blood sampling. We used an aptamer-based assay of 1129 plasma proteins, and patient clinical details were concealed to the technicians. We identified a panel of prognostic proteins, confirmed with alternative targeted assays, which we evaluated against the established prognostic risk equation for pulmonary arterial hypertension derived from the REVEAL registry. All-cause mortality was the primary endpoint. FINDINGS: 20 proteins differentiated survivors and non-survivors in 143 consecutive patients with idiopathic or heritable pulmonary arterial hypertension with 2 years' follow-up (cohort 1) and in a further 75 patients with 2·5 years' follow-up (cohort 2). Nine proteins were both prognostic independent of plasma NT-proBNP concentrations and confirmed by targeted assays. The functions of these proteins relate to myocardial stress, inflammation, pulmonary vascular cellular dysfunction and structural dysregulation, iron status, and coagulation. A cutoff-based score using the panel of nine proteins provided prognostic information independent of the REVEAL equation, improving the C statistic from area under the curve 0·83 (for REVEAL risk score, 95% CI 0·77-0·89; p<0·0001) to 0·91 (for panel and REVEAL 0·87-0·96; p<0·0001) and improving reclassification indices without detriment to calibration. Poor survival was preceded by an adverse change in panel score in paired samples from 43 incident patients with pulmonary arterial hypertension in cohort 3 (p=0·0133). The protein panel was validated in 93 patients with idiopathic or heritable pulmonary arterial hypertension in cohort 4, with 4·4 years' follow-up and improved risk estimates, providing complementary information to the clinical risk equation. INTERPRETATION: A combination of nine circulating proteins identifies patients with pulmonary arterial hypertension with a high risk of mortality, independent of existing clinical assessments, and might have a use in clinical management and the evaluation of new therapies. FUNDING: National Institute for Health Research, Wellcome Trust, British Heart Foundation, Assistance Publique-Hôpitaux de Paris, Inserm, Université Paris-Sud, and Agence Nationale de la Recherche.


Assuntos
Proteínas Sanguíneas/análise , Hipertensão Pulmonar Primária Familiar/sangue , Hipertensão/sangue , Proteoma/análise , Adulto , Idoso , Pressão Arterial , Biomarcadores/sangue , Estudos de Coortes , Hipertensão Pulmonar Primária Familiar/mortalidade , Feminino , Humanos , Hipertensão/mortalidade , Masculino , Pessoa de Meia-Idade , Medição de Risco , Fatores de Risco
4.
Expert Opin Investig Drugs ; 20(4): 567-76, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21391889

RESUMO

INTRODUCTION: Pulmonary hypertension (PH) is a severe condition with a poor prognosis despite recent treatment advances. Therapies with new mechanisms of action are needed. AREAS COVERED: This review will help readers understand the mechanism of action of the soluble guanylate cyclase (sGC) stimulator riociguat (BAY 63-2521) and will provide a comprehensive summary regarding efficacy and safety of this drug in the management of PH. The most relevant publications up to December 2010 were used as sources for this review. EXPERT OPINION: Cyclic guanosine monophosphate (cGMP) is an important mediator of the preferential perfusion of well-ventilated regions throughout the lung. Drugs that increase cGMP levels could promote pulmonary vasorelaxation while maintaining optimal gas exchange. cGMP is generated by sGC, which can be stimulated by nitric oxide (NO). Riociguat stimulates sGC independently of NO and increases the sensitivity of sGC to NO, resulting in increased cGMP levels. Results to date suggest rapid, potent and prolonged efficacy and good tolerability in different types of PH. Phase III clinical trials are evaluating the long-term safety and clinical effectiveness of riociguat in pulmonary arterial hypertension (PAH) and chronic thromboembolic PH. Riociguat has the potential to become an important drug for the treatment of patients with PH.


Assuntos
Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Hipertensão Pulmonar/tratamento farmacológico , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Animais , Ensaios Clínicos como Assunto , Avaliação Pré-Clínica de Medicamentos , Guanilato Ciclase , Humanos , Modelos Cardiovasculares , Receptores Citoplasmáticos e Nucleares/agonistas , Guanilil Ciclase Solúvel
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA