Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Hum Behav ; 6(3): 455-469, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35145280

RESUMO

To derive meaning from sound, the brain must integrate information across many timescales. What computations underlie multiscale integration in human auditory cortex? Evidence suggests that auditory cortex analyses sound using both generic acoustic representations (for example, spectrotemporal modulation tuning) and category-specific computations, but the timescales over which these putatively distinct computations integrate remain unclear. To answer this question, we developed a general method to estimate sensory integration windows-the time window when stimuli alter the neural response-and applied our method to intracranial recordings from neurosurgical patients. We show that human auditory cortex integrates hierarchically across diverse timescales spanning from ~50 to 400 ms. Moreover, we find that neural populations with short and long integration windows exhibit distinct functional properties: short-integration electrodes (less than ~200 ms) show prominent spectrotemporal modulation selectivity, while long-integration electrodes (greater than ~200 ms) show prominent category selectivity. These findings reveal how multiscale integration organizes auditory computation in the human brain.


Assuntos
Córtex Auditivo , Estimulação Acústica/métodos , Percepção Auditiva , Encéfalo , Mapeamento Encefálico/métodos , Humanos
2.
J Neurosci ; 31(9): 3176-85, 2011 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-21368029

RESUMO

Previous studies raise the hypothesis that attentional bias in the phase of neocortical excitability fluctuations (oscillations) represents a fundamental mechanism for tuning the brain to the temporal dynamics of task-relevant event patterns. To evaluate this hypothesis, we recorded intracranial electrocortical activity in human epilepsy patients while they performed an audiovisual stream selection task. Consistent with our hypothesis, (1) attentional modulation of oscillatory entrainment operates in a distinct network of areas including auditory, visual, posterior parietal, inferior motor, inferior frontal and superior midline frontal cortex, (2) the degree of oscillatory entrainment depends on the predictability of the stimulus stream, and (3) the attentional phase shift of entrained oscillation cooccurs with classical attentional effects observed on phase-locked evoked activity in sensory-specific areas but seems to operate on entrained low-frequency oscillations that cannot be explained by sensory activity evoked at the rate of stimulation. Thus, attentional entrainment appears to tune a network of brain areas to the temporal dynamics of behaviorally relevant event streams, contributing to its perceptual and behavioral selection.


Assuntos
Estimulação Acústica/métodos , Atenção/fisiologia , Neocórtex/fisiologia , Estimulação Luminosa/métodos , Desempenho Psicomotor/fisiologia , Eletroencefalografia/métodos , Feminino , Humanos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA