Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 105(24): 9321-9332, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34797390

RESUMO

Infections caused by carbapenem-resistant Pseudomonas aeruginosa are life-threatening due to its synergistic resistance mechanisms resulting in the ineffectiveness of the used antimicrobials. This study aimed to characterize P. aeruginosa isolates for antimicrobial susceptibility, biofilm formation virulence genes, and molecular mechanisms responsible for resistance against various antimicrobials. Out of 700 samples, 91 isolates were confirmed as P. aeruginosa which were further classified into 19 non-multidrug-resistant (non-MDR), 7 multidrug-resistant (MDR), 19 extensively drug-resistant (XDR), and 8 pan drug-resistant (PDR) pulsotypes based on standard Kirby Bauer disc diffusion test and pulse field gel electrophoresis. In M9 minimal media, strong biofilms were formed by the XDR and PDR pulsotypes as compared to the non-MDR pulsotypes. The virulence genes, responsible for the worsening of wounds including LasB, plcH, toxA, and exoU, were detected among all MDR, XDR, and PDR pulsotypes. Carbapenemase activity was phenotypically detected in 45% pulsotypes and the responsible genes were found as blaGES (100%), blaVIM (58%), blaIMP (4%), and blaNDM (4%). Real-time polymerase chain reaction showed the concomitant use of multiple mechanisms such as oprD under-expression, enhanced efflux pump activity, and ampC overexpression in the resistant isolates. Polymyxin is found as the only class left with more than 80% susceptibility among the isolates which is an alarming situation suggesting appropriate measures to be taken including alternative therapies. KEY POINTS: • Multidrug-resistant P. aeruginosa isolates formed stronger biofilms in minimal media. • Only polymyxin antimicrobial was found effective against MDR P. aeruginosa isolates. • Under-expression of oprD and overexpression of ampC were found in resistant isolates.


Assuntos
Infecções por Pseudomonas , Infecção dos Ferimentos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Farmacorresistência Bacteriana Múltipla , Humanos , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/genética , beta-Lactamases/genética
2.
Langmuir ; 36(2): 628-636, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31895565

RESUMO

One of the most commonly used bonds between two biomolecules is the bond between biotin and streptavidin (SA) or streptavidin homologues (SAHs). A high dissociation constant and the consequent high-temperature stability even allows for its use in nucleic acid detection under polymerase chain reaction (PCR) conditions. There are a number of SAHs available, and for assay design, it is of great interest to determine as to which SAH will perform the best under assay conditions. Although there are numerous single studies on the characterization of SAHs in solution or selected solid phases, there is no systematic study comparing different SAHs for biomolecule-binding, hybridization, and PCR assays on solid phases. We compared streptavidin, core streptavidin, traptavidin, core traptavidin, neutravidin, and monomeric streptavidin on the surface of microbeads (10-15 µm in diameter) and designed multiplex microbead-based experiments and analyzed simultaneously the binding of biotinylated oligonucleotides and the hybridization of oligonucleotides to complementary capture probes. We also bound comparably large DNA origamis to capture probes on the microbead surface. We used a real-time fluorescence microscopy imaging platform, with which it is possible to subject samples to a programmable time and temperature profile and to record binding processes on the microbead surface depending on the time and temperature. With the exception of core traptavidin and monomeric streptavidin, all other SA/SAHs were suitable for our investigations. We found hybridization efficiencies close to 100% for streptavidin, core streptavidin, traptavidin, and neutravidin. These could all be considered equally suitable for hybridization, PCR applications, and melting point analysis. The SA/SAH-biotin bond was temperature-sensitive when the oligonucleotide was mono-biotinylated, with traptavidin being the most stable followed by streptavidin and neutravidin. Mono-biotinylated oligonucleotides can be used in experiments with temperatures up to 70 °C. When oligonucleotides were bis-biotinylated, all SA/SAH-biotin bonds had similar temperature stability under PCR conditions, even if they comprised a streptavidin variant with slower biotin dissociation and increased mechanostability.

3.
Int J Med Microbiol ; 303(6-7): 396-403, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23856339

RESUMO

Following the Europe-wide ban of antimicrobial growth promoters, feed supplementation with zinc has increased in livestock breeding. In addition to possible beneficial effects on animal health, feed supplementation with heavy metals is known to influence the gut microbiota and might promote the spread of antimicrobial resistance via co-selection or other mechanisms. As Escherichia coli is among the most important pathogens in pig production and often displays multi-resistant phenotypes, we set out to investigate the influence of zinc feed additives on the composition of the E. coli populations in vivo focusing on phylogenetic diversity and antimicrobial resistance. In a piglet feeding trial, E. coli were isolated from ileum and colon digesta of high dose zinc-supplemented (2500ppm) and background dose (50ppm) piglets (control group). The E. coli population was characterized via pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST) for the determination of the phylogenetic background. Phenotypic resistance screening via agar disk diffusion and minimum inhibitory concentration testing was followed by detection of resistance genes for selected clones. We observed a higher diversity of E. coli clones in animals supplemented with zinc compared to the background control group. The proportion of multi-resistant E. coli was significantly increased in the zinc group compared to the control group (18.6% vs. 0%). For several subclones present both in the feeding and the control group we detected up to three additional phenotypic and genotypic resistances in the subclones from the zinc feeding group. Characterization of these subclones suggests an increase in antimicrobial resistance due to influences on plasmid uptake by zinc supplementation, questioning the reasonability of zinc feed additives as a result of the ban of antimicrobial growth promoters.


Assuntos
Dieta/métodos , Suplementos Nutricionais , Farmacorresistência Bacteriana Múltipla , Escherichia coli/efeitos dos fármacos , Trato Gastrointestinal/microbiologia , Zinco/administração & dosagem , Ração Animal , Animais , Análise por Conglomerados , Impressões Digitais de DNA , Eletroforese em Gel de Campo Pulsado , Escherichia coli/classificação , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Genótipo , Alemanha , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Suínos
4.
Vet Immunol Immunopathol ; 118(1-2): 1-11, 2007 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-17498814

RESUMO

Probiotic bacteria have been suggested to stimulate the host immune system. In this study we evaluated the immunomodulatory effects of probiotic Bacillus cereus var. toyoi on the systemic immunity of piglets. A pool of 70 piglets was divided into a probiotic or control group. We determined the ratios of peripheral blood mononuclear cell (PBMC) subsets and measured proliferative responses and cytokine production of PBMCs and effects on vaccination responses. Blood samples of probiotic-treated piglets showed a significantly lower frequency of CD8(high)/CD3+ T cells and CD8(low)/CD3+ T cells and a significant higher CD4+/CD8+ ratio. IL-4 and IFN-gamma production of polyclonally stimulated PBMCs was on average higher in the probiotic group. Specific proliferative responses of PBMCs to Influenza vaccination antigens were significantly higher and antibody titers against H3N2 Influenza and Mycoplasma vaccination antigens were on average higher in the probiotic group. In conclusion, B. cereus var. toyoi therefore alters the immune status of piglets as indicated by changes in the ratios as well as functionalities of systemic immune cell populations.


Assuntos
Bacillus cereus/imunologia , Probióticos/farmacologia , Suínos/imunologia , Linfócitos T/efeitos dos fármacos , Adjuvantes Imunológicos , Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Animais , Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , Vacinas Bacterianas/imunologia , Proliferação de Células , Citocinas/metabolismo , Dieta/veterinária , Suplementos Nutricionais , Vacinas contra Influenza/imunologia , Leucócitos Mononucleares/efeitos dos fármacos , Mycoplasma/imunologia , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA