Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Pollut ; 327: 121519, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36990343

RESUMO

There is increasing awareness for beneficial health effects of green space surrounding the home, but the underlying mechanisms are not yet fully understood and challenging to study given the correlation with other exposures. Here, the association of residential greenness and vitamin D including a gene-environment interaction is investigated. 25-hydroxyvitamin D (25(OH)D) was measured by electrochemiluminescence at ages 10 and 15 years in participants of two German birth cohorts GINIplus and LISA. Greenness was measured using the Landsat-derived Normalized Difference Vegetation Index (NDVI) in a 500 m buffer surrounding the home. Linear and logistic regression models were applied at both time points adjusted for several covariates (N10Y = 2,504, N15Y = 2,613). In additional analyses vitamin D-related genes, physical activity, time spent outdoors, supplements, and measurement season were investigated as potential confounders or effect modifiers. A 1.5-SD increase in NDVI was significantly associated with increased 25(OH)D values at ages 10 and 15 years (ß10y = 2.41 nmol/l, p=<0.01; ß15y = 2.03 nmol/l, p = 0.02). In stratified analyses, the associations were not seen in participants spending more than 5 h/day outside in summer, having a high physical activity level, taking supplements, or being examined during the winter season. In a subset (n = 1,732) with genetic data, a significant gene-environment interaction of NDVI with CYP2R1, an upstream gene in 25(OH)D synthesis, was observed at age 10 years. When investigating 25(OH)D sufficiency, defined as values above 50 nmol/l, a 1.5-SD increase in NDVI was associated with significantly higher odds of having sufficient 25 (OH)D levels at age 10 years (OR = 1.48, 1.19-1.83). In conclusion, robust associations between residential greenness and 25 (OH)D levels were observed in children and adolescents independent of other confounders and additionally supported by the presence of a gene-environment interaction. Effects of NDVI were stronger in those having lower vitamin D levels at age 10 years due to their covariate profile or genetically lower 25(OH)D synthesis.


Assuntos
Meio Ambiente , Interação Gene-Ambiente , Criança , Adolescente , Humanos , Vitaminas , Estações do Ano , Vitamina D
2.
Sci Total Environ ; 763: 143006, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33131877

RESUMO

BACKGROUND: Pollen exposure has both acute and chronic detrimental effects on allergic asthma, but little is known about its wider effects on respiratory health. This is increasingly important knowledge as ambient pollen levels are changing with the changing global climate. OBJECTIVE: To assess associations of pollen exposure with lung function and fractional exhaled nitric oxide (FeNO) at age 15 in two prospective German birth cohorts, GINIplus and LISA. METHODS: Background city-specific pollen exposure was measured in infancy (during the first three months of life), and contemporary (on the day of and 7 days prior to lung function measurement). Greenness levels within circular buffers (100-3000 m) around the birth and 15-year home addresses were calculated using the satellite-derived Normalized Difference Vegetation Index. Regression models were used to assess the associations of grass and birch pollen with lung function and FeNO, and the modifying effects of residential greenness were explored. RESULTS: Cumulative early life exposure to grass pollen was associated with reduced lung function in adolescence (FEV1: -4.9 mL 95%CI: -9.2, -0.6 and FVC: -5.2 mL 95%CI: -9.8, -0.5 per doubling of pollen count). Acute grass pollen exposure was associated with increased airway inflammation in all children, with higher FeNO increases in children living in green areas. In contrast acute birch pollen exposure was associated with reduced lung function only in children sensitised to birch allergens. CONCLUSION: This study provides suggestive evidence that early pollen exposure has a negative effect on later lung function, which is in turn influenced by acute pollen exposures.


Assuntos
Expiração , Óxido Nítrico , Adolescente , Criança , Humanos , Pulmão , Pólen , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA