Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 13(7): e0200210, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29979748

RESUMO

Hearing loss is the most common sensorineural disorder, affecting over 5% of the population worldwide. Its most frequent cause is the loss of hair cells (HCs), the mechanosensory receptors of the cochlea. HCs transduce incoming sounds into electrical signals that activate auditory neurons, which in turn send this information to the brain. Although some spontaneous HC regeneration has been observed in neonatal mammals, the very small pool of putative progenitor cells that have been identified in the adult mammalian cochlea is not able to replace the damaged HCs, making any hearing impairment permanent. To date, guided differentiation of human cells to HC-like cells has only been achieved using either embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs). However, use of such cell types suffers from a number of important disadvantages, such as the risk of tumourigenicity if transplanted into the host´s tissue. We have obtained cells expressing hair cell markers from cultures of human fibroblasts by overexpression of GFI1, Pou4f3 and ATOH1 (GPA), three genes that are known to play a critical role in the development of HCs. Immunocytochemical, qPCR and RNAseq analyses demonstrate the expression of genes typically expressed by HCs in the transdifferentiated cells. Our protocol represents a much faster approach than the methods applied to ESCs and iPSCs and validates the combination of GPA as a set of genes whose activation leads to the direct conversion of human somatic cells towards the hair cell lineage. Our observations are expected to contribute to the development of future therapies aimed at the regeneration of the auditory organ and the restoration of hearing.


Assuntos
Transdiferenciação Celular/fisiologia , Células Ciliadas Auditivas/citologia , Células Ciliadas Auditivas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Biomarcadores/metabolismo , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/genética , Linhagem da Célula/fisiologia , Transdiferenciação Celular/efeitos dos fármacos , Transdiferenciação Celular/genética , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Expressão Gênica/efeitos dos fármacos , Células Ciliadas Auditivas/efeitos dos fármacos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Miosina VIIa , Miosinas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fator de Transcrição Brn-3C/genética , Fator de Transcrição Brn-3C/metabolismo , Fatores de Transcrição/genética , Tretinoína/farmacologia
2.
Mol Neurobiol ; 47(1): 261-79, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23154938

RESUMO

Increasing evidence shows that hearing loss is a risk factor for tinnitus and hyperacusis. Although both often coincide, a causal relationship between tinnitus and hyperacusis has not been shown. Currently, tinnitus and hyperacusis are assumed to be caused by elevated responsiveness in subcortical circuits. We examined both the impact of different degrees of cochlear damage and the influence of stress priming on tinnitus induction. We used (1) a behavioral animal model for tinnitus designed to minimize stress, (2) ribbon synapses in inner hair cells (IHCs) as a measure for deafferentation, (3) the integrity of auditory brainstem responses (ABR) to detect differences in stimulus-evoked neuronal activity, (4) the expression of the activity-regulated cytoskeletal protein, Arc, to identify long-lasting changes in network activity within the basolateral amygdala (BLA), hippocampal CA1, and auditory cortex (AC), and (5) stress priming to investigate the influence of corticosteroid on trauma-induced brain responses. We observed that IHC ribbon loss (deafferentation) leads to tinnitus when ABR functions remain reduced and Arc is not mobilized in the hippocampal CA1 and AC. If, however, ABR waves are functionally restored and Arc is mobilized, tinnitus does not occur. Both central response patterns were found to be independent of a profound threshold loss and could be shifted by the corticosterone level at the time of trauma. We, therefore, discuss the findings in the context of a history of stress that can trigger either an adaptive or nonadaptive brain response following injury.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Células Ciliadas Auditivas Internas/patologia , Proteínas do Tecido Nervoso/metabolismo , Ruído/efeitos adversos , Zumbido/metabolismo , Zumbido/patologia , Estimulação Acústica , Animais , Córtex Auditivo/metabolismo , Córtex Auditivo/patologia , Córtex Auditivo/fisiopatologia , Limiar Auditivo , Proteínas do Citoesqueleto/genética , Potenciais Evocados Auditivos do Tronco Encefálico , Feminino , Células Ciliadas Auditivas Internas/metabolismo , Perda Auditiva/complicações , Perda Auditiva/metabolismo , Perda Auditiva/patologia , Perda Auditiva/fisiopatologia , Modelos Biológicos , Proteínas do Tecido Nervoso/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Estresse Psicológico/complicações , Estresse Psicológico/patologia , Estresse Psicológico/fisiopatologia , Zumbido/complicações , Zumbido/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA