Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Psychopharmacology (Berl) ; 239(11): 3723-3730, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36190536

RESUMO

RATIONALE: Synthetic phenethylamine (PEA) analogs, such as ß-methylphenethylamine (BMPEA) and N,α-diethylphenethylamine (DEPEA), are often found in dietary supplements, despite regulations prohibiting their sale. PEA analogs are structurally related to amphetamine, and we have shown that BMPEA and DEPEA produce cardiovascular stimulation mimicking the effects of amphetamine. However, few studies have examined behavioral effects of BMPEA, DEPEA, and other PEA analogs. OBJECTIVES: Here, we examined the reinforcing effects of α-ethylphenethylamine (AEPEA, 1 mg/kg/injection), DEPEA (1 mg/kg/injection), and BMPEA (3 mg/kg/injection) as compared to amphetamine (0.1 mg/kg/injection) using a fixed-ratio 1 self-administration paradigm in male rats. METHODS: Male rats were trained in self-administration chambers containing 2 nose-poke holes. A nose-poke response in the active hole delivered drug or saline, whereas a nose-poke response in the inactive hole had no programmed consequence. Four groups of rats were initially trained for 10 days with the doses noted above. Upon acquisition of drug self-administration, a dose-effect function was determined by training rats on 3 additional doses for 3 days each. A separate group of rats was trained with saline. RESULTS: Male rats self-administered each PEA analog and amphetamine, as shown by significant increases in active responses versus inactive responses. Subsequent dose-response testing showed clear differences in potency of the compounds. Amphetamine showed a typical inverted U-shaped dose-effect function, peaking at 0.1 mg/kg/injection. AEPEA and DEPEA also showed inverted dose-effect functions, with each peaking at 0.3 mg/kg/injection. BMPEA did not show an inverted U-shaped dose-effect function, but active responding slowly increased up to a dose of 6 mg/kg/injection. CONCLUSIONS: Taken together, our findings indicate that dietary supplements containing PEA analogs may have significant abuse liability when used recreationally.


Assuntos
Anfetamina , Fenetilaminas , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Anfetamina/farmacologia , Fenetilaminas/farmacologia , Autoadministração , Suplementos Nutricionais , Relação Dose-Resposta a Droga
2.
J Pharmacol Exp Ther ; 376(1): 118-126, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33082158

RESUMO

Dietary supplements often contain additives not listed on the label, including α-ethyl homologs of amphetamine such as N,α-diethylphenethylamine (DEPEA). Here, we examined the neurochemical and cardiovascular effects of α-ethylphenethylamine (AEPEA), N-methyl-α-ethylphenethylamine (MEPEA), and DEPEA as compared with the effects of amphetamine. All drugs were tested in vitro using uptake inhibition and release assays for monoamine transporters. As expected, amphetamine acted as a potent and efficacious releasing agent at dopamine transporters (DAT) and norepinephrine transporters (NET) in vitro. AEPEA and MEPEA were also releasers at catecholamine transporters, with greater potency at NET than DAT. DEPEA displayed fully efficacious release at NET but weak partial release at DAT (i.e., 40% of maximal effect). In freely moving, conscious male rats fitted with biotelemetry transmitters for physiologic monitoring, amphetamine (0.1-3.0 mg/kg, s.c.) produced robust dose-related increases in blood pressure (BP), heart rate (HR), and motor activity. AEPEA (1-10 mg/kg, s.c.) produced significant increases in BP but not HR or activity, whereas DEPEA and MEPEA (1-10 mg/kg, s.c.) increased BP, HR, and activity. In general, the phenethylamine analogs were approximately 10-fold less potent than amphetamine. Our results show that α-ethylphenethylamine analogs are biologically active. Although less potent than amphetamine, they produce cardiovascular effects that could pose risks to humans. Given that MEPEA and DEPEA increased locomotor activity, these substances may also have significant abuse potential. SIGNIFICANCE STATEMENT: The α-ethyl homologs of amphetamine have significant cardiovascular, behavioral, and neurochemical effects in rats. Given that these compounds are often not listed on the ingredient labels of dietary supplements, these compounds could pose a risk to humans using these products.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Butilaminas/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Metanfetamina/análogos & derivados , Movimento/efeitos dos fármacos , Fenetilaminas/farmacologia , Animais , Proteínas da Membrana Plasmática de Transporte de Catecolaminas/metabolismo , Suplementos Nutricionais/efeitos adversos , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Relação Dose-Resposta a Droga , Masculino , Metanfetamina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Ratos , Ratos Sprague-Dawley
3.
J Pharmacol Exp Ther ; 369(3): 328-336, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30898867

RESUMO

ß-Methylphenethylamine [(BMPEA), 2-phenylpropan-1-amine] is a structural isomer of amphetamine (1-phenylpropan-2-amine) that has been identified in preworkout and weight loss supplements, yet little information is available about its pharmacology. Here, the neurochemical and cardiovascular effects of BMPEA and its analogs, N-methyl-2-phenylpropan-1-amine (MPPA) and N,N-dimethyl-2-phenylpropan-1-amine (DMPPA), were compared with structurally related amphetamines. As expected, amphetamine and methamphetamine were potent substrate-type releasing agents at dopamine transporters (DATs) and norepinephrine transporters (NETs) in rat brain synaptosomes. BMPEA and MPPA were also substrates at DATs and NETs, but they were at least 10-fold less potent than amphetamine. DMPPA was a weak substrate only at NETs. Importantly, the releasing actions of BMPEA and MPPA were more potent at NETs than DATs. Amphetamine produced significant dose-related increases in blood pressure (BP), heart rate (HR), and locomotor activity in conscious rats fitted with surgically implanted biotelemetry transmitters. BMPEA, MPPA, and DMPPA produced increases in BP that were similar to the effects of amphetamine, but the compounds failed to substantially affect HR or activity. The hypertensive effect of BMPEA was reversed by the α-adrenergic antagonist prazosin but not the ganglionic blocker chlorisondamine. Radioligand binding at various G protein-coupled receptors did not identify nontransporter sites of action that could account for cardiovascular effects of BMPEA or its analogs. Our results show that BMPEA, MPPA, and DMPPA are biologically active. The compounds are unlikely to be abused due to weak effects at DATs, but they could produce adverse cardiovascular effects via substrate activity at peripheral NET sites.


Assuntos
Anfetaminas/efeitos adversos , Pressão Sanguínea/efeitos dos fármacos , Suplementos Nutricionais/efeitos adversos , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Animais , Frequência Cardíaca/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo , Temperatura
4.
Alcohol Clin Exp Res ; 41(5): 1063-1071, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28294355

RESUMO

BACKGROUND: Pavlovian-Instrumental-Transfer (PIT) examines the effects of associative learning upon instrumental responding. Previous studies examining PIT with ethanol (EtOH)-maintained responding showed increases in responding following presentation of an EtOH-paired conditioned stimulus (CS). Recently, we conducted 2 studies examining PIT with an EtOH-paired CS. One of these found increases in responding, while the other did not. This less robust demonstration of PIT may have resulted from the form of the CS used, as we used a 120-second light stimulus as a CS, while the previous studies used either a 120-second auditory stimulus or a 10-second light stimulus. This study examined whether using conditions similar to our earlier study, but with either a 120-second auditory or a 10-second light stimulus as a CS, resulted in more robust PIT. We also examined the reliability of our previous failure to observe PIT. METHODS: Three experiments were conducted examining whether PIT was obtained using (i) a 120-second light stimulus, (ii) a 10-second light stimulus, or (iii) a 120-second auditory stimulus as CSs. RESULTS: We found PIT was not obtained using (i) a 120-second light stimulus as a CS, (ii) a 10-second light stimulus as a CS, or (iii) a 120-second auditory stimulus as a CS. CONCLUSIONS: These results suggest that CS form does not account for our earlier failure to see PIT. Rather, factors like rat strain or how EtOH drinking is induced may account for when PIT is or is not observed.


Assuntos
Estimulação Acústica/métodos , Consumo de Bebidas Alcoólicas/psicologia , Condicionamento Clássico/efeitos dos fármacos , Etanol/administração & dosagem , Extinção Psicológica/efeitos dos fármacos , Animais , Aprendizagem por Associação/efeitos dos fármacos , Aprendizagem por Associação/fisiologia , Condicionamento Clássico/fisiologia , Extinção Psicológica/fisiologia , Masculino , Distribuição Aleatória , Ratos , Ratos Endogâmicos Lew , Autoadministração
5.
BMC Pharmacol Toxicol ; 17(1): 49, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27817750

RESUMO

BACKGROUND: The negative consequences of nicotine use are well known and documented, however, abstaining from nicotine use and achieving abstinence poses a major challenge for the majority of nicotine users trying to quit. l-Tetrahydropalmatine (l-THP), a compound extracted from the Chinese herb Corydalis, displayed utility in the treatment of cocaine and heroin addiction via reduction of drug-intake and relapse. The present study examined the effects of l-THP on abuse-related effects of nicotine. METHODS: Self-administration and reinstatement testing was conducted. Rats trained to self-administer nicotine (0.03 mg/kg/injection) under a fixed-ratio 5 schedule (FR5) of reinforcement were pretreated with l-THP (3 or 5 mg/kg), varenicline (1 mg/kg), bupropion (40 mg/kg), or saline before daily 2-h sessions. Locomotor, food, and microdialysis assays were also conducted in separate rats. RESULTS: l-THP significantly reduced nicotine self-administration (SA). l-THP's effect was more pronounced than the effect of varenicline and similar to the effect of bupropion. In reinstatement testing, animals were pretreated with the same compounds, challenged with nicotine (0.3 mg/kg, s.c.), and reintroduced to pre-extinction conditions. l-THP blocked reinstatement of nicotine seeking more effectively than either varenicline or bupropion. Locomotor data revealed that therapeutic doses of l-THP had no inhibitory effects on ambulatory ability and that l-THP (3 and 5 mg/kg) significantly blocked nicotine induced hyperactivity when administered before nicotine. In in-vivo microdialysis experiments, l-THP, varenicline, and bupropion alone elevated extracellular dopamine (DA) levels in the nucleus accumbens shell (nAcb). CONCLUSIONS: Since l-THP reduces nicotine taking and blocks relapse it could be a useful alternative to varenicline and bupropion as a treatment for nicotine addiction.


Assuntos
Comportamento Aditivo/tratamento farmacológico , Comportamento Aditivo/psicologia , Alcaloides de Berberina/uso terapêutico , Nicotina/administração & dosagem , Animais , Relação Dose-Resposta a Droga , Masculino , Microdiálise/métodos , Ratos , Ratos Sprague-Dawley , Autoadministração
6.
Psychopharmacology (Berl) ; 163(3-4): 327-44, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12373434

RESUMO

On a second-order schedule, a subject responds according to one schedule (the unit schedule) for a brief presentation of a stimulus such as a light. Responding by the subject on this unit schedule is then reinforced according to another schedule of reinforcement. Second-order schedules of drug injection allow the study of more complex behavioral sequences than do simple schedules and may more accurately reflect the human drug-abuse situation. Much of the early work in this area used primates as subjects and focused on the behavioral variables controlling responding. It was shown that long sequences of behavior could be maintained on second-order schedules with relatively infrequent injections of drug and that the second-order, brief-stimulus presentations were critical to the acquisition and maintenance of responding. Also, the continued presentation of the brief stimulus in extinction often led to prolonged extinction behavior. These studies clearly showed that environmental stimuli greatly influence drug self-administration behavior under second-order schedules. The focus of much of the more recent work with second-order schedules has been on the evaluation of pharmacological treatments for drug addiction, both as antagonist and substitution therapies. Both types of potential therapies have shown promise in these preclinical models of addictive behavior. The recent extension of second-order self-administration studies to rats as subjects has facilitated the investigation of neural mechanisms involved in this behavior. While this use of second-order schedules is a relatively recent phenomenon, significant contributions have already been made in identifying neural mechanisms critical to second-order schedule drug self-administration. This active area of research holds great promise for delineating specific brain regions critical to different aspects of drug addiction.


Assuntos
Comportamento Animal/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Esquema de Reforço , Animais , Cocaína/administração & dosagem , Cocaína/farmacologia , Relação Dose-Resposta a Droga , Esquema de Medicação , Avaliação Pré-Clínica de Medicamentos/métodos , Interações Medicamentosas , Extinção Psicológica/efeitos dos fármacos , Alimentos , Morfina/administração & dosagem , Morfina/farmacologia , Estimulação Luminosa , Piperazinas/farmacologia , Autoadministração , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA