Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 19: 1709-1721, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410418

RESUMO

Introduction: Lipid nanovesicles associated with bioactive phytochemicals from spruce needle homogenate (here called nano-sized hybridosomes or nanohybridosomes, NSHs) were considered. Methods: We formed NSHs by mixing appropriate amounts of lecithin, glycerol and supernatant of isolation of extracellular vesicles from spruce needle homogenate. We visualized NSHs by light microscopy and cryogenic transmission electron microscopy and assessed them by flow cytometry, dynamic light scattering, ultraviolet-visual spectroscopy, interferometric light microscopy and liquid chromatography-mass spectrometry. Results: We found that the particles consisted of a bilayer membrane and a fluid-like interior. Flow cytometry and interferometric light microscopy measurements showed that the majority of the particles were nano-sized. Dynamic light scattering and interferometric light microscopy measurements agreed well on the average hydrodynamic radius of the particles Rh (between 140 and 180 nm), while the concentrations of the particles were in the range between 1013 and 1014/mL indicating that NSHs present a considerable (more than 25%) of the sample which is much more than the yield of natural extracellular vesicles (EVs) from spruce needle homogenate (estimated less than 1%). Spruce specific lipids and proteins were found in hybridosomes. Discussion: Simple and low-cost preparation method, non-demanding saving process and efficient formation procedure suggest that large-scale production of NSHs from lipids and spruce needle homogenate is feasible.


Assuntos
Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Microscopia Eletrônica de Transmissão , Difusão Dinâmica da Luz , Proteínas/metabolismo , Lecitinas
2.
Rapid Commun Mass Spectrom ; 19(22): 3307-14, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16217838

RESUMO

A simple and novel approach was developed to detect non-covalent interactions. It is based on combination of solid-phase affinity capture with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). One of the interacting molecules is bound to magnetic beads and is incubated with the target molecules in solution. The complex bound on the solid support is removed from the solution and transferred for MALDI analysis. Mass spectrometry is used only to detect the target compound, which is far more straightforward than detecting the intact non-covalent complex. To demonstrate the applicability of the method, an AT-rich oligonucleotide (5'-CCCCCAATTCCCCC-3') and its complementary biotinylated sequence (5'-biotin-GGGGGAATTGGGGG-3') were hybridized and immobilized to paramagnetic particles by streptavidin-biotin interaction. The immobilized duplex oligonucleotide was reacted with minor groove binding drugs, Netropsin, Distamycin A, Hoechst 33258 and 4',6-diamidino-2-phenylindole. The resulting DNA-drug complex bound to the particles was separated and analyzed by linear MALDI-TOFMS after washing. Drugs were selectively detected in the spectra. Relative binding strengths were also estimated using competitive complexation.


Assuntos
Cromatografia de Afinidade/métodos , Oligonucleotídeos/química , Preparações Farmacêuticas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Biotina/química , Biotinilação , Cromatografia de Afinidade/instrumentação , Conformação Molecular , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação , Estreptavidina/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA