Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microb Biotechnol ; 16(2): 350-371, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36507711

RESUMO

Cattle manure has a low energy content and high fibre and water content, limiting its value for biogas production. Co-digestion with a more energy-dense material can improve the output, but the co-substrate composition that gives the best results in terms of degree of degradation, gas production and digestate quality has not yet been identified. This study examined the effects of carbohydrate, protein and fat as co-substrates for biogas production from cattle manure. Laboratory-scale semi-continuous mesophilic reactors were operated with manure in mono-digestion or in co-digestion with egg albumin, rapeseed oil, potato starch or a mixture of these, and chemical and microbiological parameters were analysed. The results showed increased gas yield for all co-digestion reactors, but only the reactor supplemented with rapeseed oil showed synergistic effects on methane yield. The reactor receiving potato starch indicated improved fibre degradation, suggesting a priming effect by the easily accessible carbon. Both these reactors showed increased species richness and enrichment of key microbial species, such as fat-degrading Syntrophomonadaceae and families known to include cellulolytic bacteria. The addition of albumin promoted enrichment of known ammonia-tolerant syntrophic acetate- and potential propionate-degrading bacteria, but still caused slight process inhibition and less efficient overall degradation of organic matter in general, and of cellulose in particular.


Assuntos
Biocombustíveis , Esterco , Bovinos , Animais , Esterco/microbiologia , Biocombustíveis/análise , Óleo de Brassica napus , Anaerobiose , Acetatos , Bactérias/metabolismo , Metano/metabolismo , Reatores Biológicos
2.
Biotechnol Biofuels ; 14(1): 56, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33663594

RESUMO

BACKGROUND: Slow degradation kinetics of long-chain fatty acids (LCFA) and their accumulation in anaerobic digesters disrupt methanogenic activity and biogas production at high loads of waste lipids. In this study, we evaluated the effect of effluent solids recirculation on microbial LCFA (oleate) degradation capacity in continuous stirred-tank sludge digesters, with the overall aim of providing operating conditions for efficient co-digestion of waste lipids. Furthermore, the impacts of LCFA feeding frequency and sulfide on process performance and microbial community dynamics were investigated, as parameters that were previously shown to be influential on LCFA conversion to biogas. RESULTS: Effluent solids recirculation to municipal sludge digesters enabled biogas production of up to 78% of the theoretical potential from 1.0 g oleate l-1 day-1. In digesters without effluent recirculation, comparable conversion efficiency could only be reached at oleate loading rates up to 0.5 g l-1 day-1. Pulse feeding of oleate (supplementation of 2.0 g oleate l-1 every second day instead of 1.0 g oleate l-1 every day) did not have a substantial impact on the degree of oleate conversion to biogas in the digesters that operated with effluent recirculation, while it marginally enhanced oleate conversion to biogas in the digesters without effluent recirculation. Next-generation sequencing of 16S rRNA gene amplicons of bacteria and archaea revealed that pulse feeding resulted in prevalence of fatty acid-degrading Smithella when effluent recirculation was applied, whereas Candidatus Cloacimonas prevailed after pulse feeding of oleate in the digesters without effluent recirculation. Combined oleate pulse feeding and elevated sulfide level contributed to increased relative abundance of LCFA-degrading Syntrophomonas and enhanced conversion efficiency of oleate, but only in the digesters without effluent recirculation. CONCLUSIONS: Effluent solids recirculation improves microbial LCFA degradation capacity, providing possibilities for co-digestion of larger amounts of waste lipids with municipal sludge.

3.
Microorganisms ; 8(4)2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32326100

RESUMO

Trace elements (TEs) are vital for anaerobic digestion (AD), due to their role as cofactors in many key enzymes. The aim of this study was to evaluate the effects of specific TE deficiencies on mixed microbial communities during AD of soluble polymer-free substrates, thus focusing on AD after hydrolysis. Three mesophilic (37 °C) continuous stirred-tank biogas reactors were depleted either of Co, Ni, or a combination of Se and W, respectively, by discontinuing their supplementation. Ni and Se/W depletion led to changes in methane kinetics, linked to progressive volatile fatty acid (VFA) accumulation, eventually resulting in process failure. No significant changes occurred in the Co-depleted reactor, indicating that the amount of Co present in the substrate in absence of supplementation was sufficient to maintain process stability. Archaeal communities remained fairly stable independent of TE concentrations, while bacterial communities gradually changed with VFA accumulation in Ni- and Se-/W-depleted reactors. Despite this, the communities remained relatively similar between these two reactors, suggesting that the major shifts in composition likely occurred due to the accumulating VFAs. Overall, the results indicate that Ni and Se/W depletion primarily lead to slower metabolic activities of methanogenic archaea and their syntrophic partners, which then has a ripple effect throughout the microbial community due to a gradual accumulation of intermediate fermentation products.

4.
Biotechnol Biofuels ; 8: 154, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26396592

RESUMO

BACKGROUND: High levels of ammonia and the presence of sulphide have major impacts on microbial communities and are known to cause operating problems in anaerobic degradation of protein-rich material. Operating strategies that can improve process performance in such conditions have been reported. The microbiological impacts of these are not fully understood, but their determination could help identify important factors for balanced, efficient operation. This study investigated the correlations between microbial community structure, operating parameters and digester performance in high-ammonia conditions. METHOD: Continuous anaerobic co-digestion of household waste and albumin was carried out in laboratory-scale digesters at high ammonia concentrations (0.5-0.9 g NH3/L). The digesters operated for 320 days at 37 or 42 °C, with or without addition of a trace element mixture including iron (TE). Abundance and composition of syntrophic acetate-oxidising bacteria (SAOB) and of methanogenic and acetogenic communities were investigated throughout the study using 16S rRNA and functional gene-based molecular methods. RESULTS: Syntrophic acetate oxidation dominated methane formation in all digesters, where a substantial enhancement in digester performance and influence on microbial community by addition of TE was shown dependent on temperature. At 37 °C, TE addition supported dominance and strain richness of Methanoculleus bourgensis and altered the acetogenic community, whereas the same supplementation at 42 °C had a low impact on microbial community structure. Both with and without TE addition operation at 42 °C instead of 37 °C had low impact on digester performance, but considerably restricted acetogenic and methanogenic community structure, evenness and richness. The abundance of known SAOB was higher in digesters without TE addition and in digesters operating at 42 °C. No synergistic effect on digester performance or microbial community structure was observed on combining increased temperature with TE addition. CONCLUSIONS: Our identification of prominent populations related to enhanced performance within methanogenic (high dominance and richness of M. bourgensis) and acetogenic communities are valuable for continued research and engineering to improve methane production in high-ammonia conditions. We also show that a temperature increase of only 5 °C within the mesophilic range results in an extreme dominance of one or a few species within these communities, independent of TE addition. Furthermore, functional stable operation was possible despite low microbial temporal dynamics, evenness and richness at the higher temperature.

5.
J Dairy Sci ; 97(9): 5729-41, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24996274

RESUMO

The objective of the study was to evaluate the effect of cashew nut shell extract (CNSE) and glycerol (purity >99%) on enteric methane (CH4) production and microbial communities in an automated gas in vitro system. Microbial communities from the in vitro system were compared with samples from the donor cows, in vivo. Inoculated rumen fluid was mixed with a diet with a 60:40 forage:concentrate ratio and, in total, 5 different treatments were set up: 5mg of CNSE (CNSE-L), 10mg of CNSE (CNSE-H), 15mmol of glycerol/L (glycerol-L), and 30mmol of glycerol/L (glycerol-H), and a control without feed additive. Gas samples were taken at 2, 4, 8, 24, 32, and 48h of incubation, and the CH4 concentration was measured. Samples of rumen fluid were taken for volatile fatty acid analysis and for microbial sequence analyses after 8, 24, and 48h of incubation. In vivo rumen samples from the cows were taken 2h after the morning feeding at 3 consecutive days to compare the in vitro system with in vivo conditions. The gas data and data from microbial sequence analysis (454 sequencing) were analyzed using a mixed model and principal components analysis. These analyses illustrated that CH4 production was reduced with the CNSE treatment, by 8 and 18%, respectively, for the L and H concentration. Glycerol instead increased CH4 production by 8 and 12%, respectively, for the L and H concentration. The inhibition with CNSE could be due to the observed shift in bacterial population, possibly resulting in decreased production of hydrogen or formate, the methanogenic substrates. Alternatively the response could be explained by a shift in the methanogenic community. In the glycerol treatments, no main differences in bacterial or archaeal population were detected compared with the in vivo control. Thus, the increase in CH4 production may be explained by the increase in substrate in the in vitro system. The reduced CH4 production in vitro with CNSE suggests that CNSE can be a promising inhibitor of CH4 formation in the rumen of dairy cows.


Assuntos
Anacardium/química , Glicerol/administração & dosagem , Metano/biossíntese , Extratos Vegetais/administração & dosagem , Silagem/análise , Animais , Archaea/classificação , Archaea/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Biomassa , Bovinos , Dieta/veterinária , Relação Dose-Resposta a Droga , Ácidos Graxos Voláteis/biossíntese , Feminino , Fermentação , Nozes/química , Análise de Componente Principal , Rúmen/microbiologia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA