Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Food Chem Toxicol ; 121: 519-526, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30243747

RESUMO

There are some genes associated to the risk of chronic diseases that present potential nutrigenetic response, such as the human manganese-dependent superoxide dismutase gene (Val16Ala-SOD2, rs4880) for which homozygous genotypes (VV and AA) are associated with higher basal superoxide (S) and hydrogen peroxide (HP) levels, respectively. It is possible that the VV- and AA-imbalance could be attenuated by selenium(Se)-rich foods such as Brazil nut (BN). To test this hypothesis, we conducted an in vitro protocol triggering a chemical S-HP imbalance by exposure of dermal fibroblast cells (HFF-1) to paraquat, which generates high S levels (VV-like treatment) and porphyrin (MnTBAP), which generates high HP levels (AA-like treatment). Modulation of cell growth and pro-oxidative and antioxidant markers were evaluated. BN aqueous extract (BNAE) most effective concentration which increased cell growth and decreased oxidative metabolism indicators of imbalanced cells was 75 ng Se/mL. However, this effect was not directly affected by the S-HP imbalance: in AA-SOD2-like cells, thioredoxin reductase (TrxR-1) gene was upregulated and in VV-SOD2-like cells an upregulation of glutathione peroxidase (GPx-1) gene expression was observed, however, this regulation occured in a homeostatic manner. These results suggest that BNAE was able to minimize negative effects in both directions of the S-HP imbalance, by modulation of different oxidative-metabolic pathways.


Assuntos
Bertholletia/química , Fibroblastos/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Extratos Vegetais/farmacologia , Superóxidos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Oxirredução , Extratos Vegetais/química
2.
Chem Biol Interact ; 273: 18-27, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28495429

RESUMO

Superoxide-hydrogen peroxide (S-HP) imbalance genetically caused by a gene polymorphism in the human manganese superoxide dismutase enzyme (Val16Ala-MnSOD) is associated with several diseases. Into mitochondria, MnSOD catalyses superoxide radical producing HP and oxygen. Ala-MnSOD genotype presents a high MnSOD efficiency and generates the highest HP concentrations that has been associated with the risk of several cancer types. Cellular selenoenzymes glutathione peroxidase and thioredoxin reductase (TrxR) and catalase (CAT) are essential to HP removal produced in excess in cells. Since, synthesis and activities of selenoenzymes are selenium dependent, we hypothesized that AA-MnSOD cells could have an improvement on antioxidant status undergoing Seleno-L-methionine (SeMet) treatment. This study performed an in vitro protocol to evaluate the response of peripheral blood mononuclear cells (PBMC) carriers of different Val16Ala-MnSOD genotypes exposed to SeMet. SeMet effects on cell viability, apoptosis induction and modulation of oxidative variables were determined using spectrophotometric, flow cytometry, fluorimetric and immunoassays. Gene modulation of antioxidant enzymes was also performed by qRT-PCR. From an initial protocol using heterozygous (AV) cells was determined that 1nM SeMet presented a cytoprotective effect. However, whereas this concentration did not change AA viability, in VV cells it was cytotoxic by increasing necrosis events. SeMet induced higher selenoenzymes levels in AA and VV cells and decreased oxidative markers levels including DNA damage. The results suggest a pharmacogenetic positive response of SeMet effect on AA-cells. Future studies in vivo could be essential to evaluate the potential clinical impact of S-HP imbalance after use of foods or supplements containing SeMet.


Assuntos
Peróxido de Hidrogênio/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Polimorfismo Genético , Selenometionina/farmacologia , Superóxido Dismutase/genética , Superóxidos/metabolismo , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Leucócitos Mononucleares/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Selenometionina/administração & dosagem , Relação Estrutura-Atividade , Superóxido Dismutase/metabolismo
3.
PLoS One ; 9(10): e107299, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25330300

RESUMO

Methotrexate (MTX) is a folic acid antagonist used in high doses as an anti-cancer treatment and in low doses for the treatment of some autoimmune diseases. MTX use has been linked to oxidative imbalance, which may cause multi-organ toxicities that can be attenuated by antioxidant supplementation. Despite the oxidative effect of MTX, the influence of antioxidant gene polymorphisms on MTX toxicity is not well studied. Therefore, we analyzed here whether a genetic imbalance of the manganese-dependent superoxide dismutase (SOD2) gene could have some impact on the MTX cytotoxic response. An in vitro study using human peripheral blood mononuclear cells (PBMCs) obtained from carriers with different Ala16Val-SOD2 genotypes (AA, VV and AV) was carried out, and the effect on cell viability and proliferation was analyzed, as well as the effect on oxidative, inflammatory and apoptotic markers. AA-PBMCs that present higher SOD2 efficiencies were more resistance to high MTX doses (10 and 100 µM) than were the VV and AV genotypes. Both lipoperoxidation and ROS levels increased significantly in PBMCs exposed to MTX independent of Ala16Val-SOD2 genotypes, whereas increased protein carbonylation was observed only in PBMCs from V allele carriers. The AA-PBMCs exposed to MTX showed decreasing SOD2 activity, but a concomitant up regulation of the SOD2 gene was observed. A significant increase in glutathione peroxidase (GPX) levels was observed in all PBMCs exposed to MTX. However, this effect was more intense in AA-PBMCs. Caspase-8 and -3 levels were increased in cells exposed to MTX, but the modulation of these genes, as well as that of the Bax and Bcl-2 genes involved in the apoptosis pathway, presented a modulation that was dependent on the SOD2 genotype. MTX at a concentration of 10 µM also increased inflammatory cytokines (IL-1ß, IL-6, TNFα and Igγ) and decreased the level of IL-10 anti-inflammatory cytokine, independent of SOD2 genetic background. The results suggest that potential pharmacogenetic effect on the cytotoxic response to MTX due differential redox status of cells carriers different SOD2 genotypes.


Assuntos
Metotrexato/farmacologia , Polimorfismo de Nucleotídeo Único , Superóxido Dismutase/genética , Antioxidantes/metabolismo , Caspases/genética , Caspases/metabolismo , Citocinas/biossíntese , Relação Dose-Resposta a Droga , Fluoresceínas/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/genética , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/genética , Carbonilação Proteica/efeitos dos fármacos , Carbonilação Proteica/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA