Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurochem Res ; 45(7): 1551-1565, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32248400

RESUMO

Focal epileptic seizures can in some patients be managed by inhibiting γ-aminobutyric acid (GABA) uptake via the GABA transporter 1 (GAT1) using tiagabine (Gabitril®). Synergistic anti-seizure effects achieved by inhibition of both GAT1 and the betaine/GABA transporter (BGT1) by tiagabine and EF1502, compared to tiagabine alone, suggest BGT1 as a target in epilepsy. Yet, selective BGT1 inhibitors are needed for validation of this hypothesis. In that search, a series of BGT1 inhibitors typified by (1R,2S)-2-((4,4-bis(3-methylthiophen-2-yl)but-3-en-yl)(methyl)amino)cyclohexanecarboxylic acid (SBV2-114) was developed. A thorough pharmacological characterization of SBV2-114 using a cell-based [3H]GABA uptake assay at heterologously expressed BGT1, revealed an elusive biphasic inhibition profile with two IC50 values (4.7 and 556 µM). The biphasic profile was common for this structural class of compounds, including EF1502, and was confirmed in the MDCK II cell line endogenously expressing BGT1. The possibility of two binding sites for SBV2-114 at BGT1 was assessed by computational docking studies and examined by mutational studies. These investigations confirmed that the conserved residue Q299 in BGT1 is involved in, but not solely responsible for the biphasic inhibition profile of SBV2-114. Animal studies revealed anti-seizure effects of SBV2-114 in two mouse models, supporting a function of BGT1 in epilepsy. However, as SBV2-114 is apparent to be rather non-selective for BGT1, the translational relevance of this observation is unknown. Nevertheless, SBV2-114 constitutes a valuable tool compound to study the molecular mechanism of an emerging biphasic profile of BGT1-mediated GABA transport and the putative involvement of two binding sites for this class of compounds.


Assuntos
Anticonvulsivantes/uso terapêutico , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Convulsões/tratamento farmacológico , Convulsões/metabolismo , Estimulação Acústica/efeitos adversos , Animais , Anticonvulsivantes/farmacologia , Células CHO , Cricetulus , Epilepsia Reflexa/tratamento farmacológico , Epilepsia Reflexa/metabolismo , Proteínas da Membrana Plasmática de Transporte de GABA/química , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Convulsões/etiologia , Resultado do Tratamento
2.
Metab Brain Dis ; 28(2): 127-31, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23420347

RESUMO

Glutamate dehydrogenase (GDH) uses ammonia to reversibly convert α-ketoglutarate to glutamate using NADP(H) and NAD(H) as cofactors. While GDH in most mammals is encoded by a single GLUD1 gene, humans and other primates have acquired a GLUD2 gene with distinct tissue expression profile. The two human isoenzymes (hGDH1 and hGDH2), though highly homologous, differ markedly in their regulatory properties. Here we obtained hGDH1 and hGDH2 in recombinant form and studied their Km for ammonia in the presence of 1.0 mM ADP. The analyses showed that lowering the pH of the buffer (from 8.0 to 7.0) increased the Km for ammonia substantially (hGDH1: from 12.8 ± 1.4 mM to 57.5 ± 1.6 mM; hGDH2: from 14.7 ± 1.6 mM to 62.2 ± 1.7 mM), thus essentially precluding reductive amination. Moreover, lowering the ADP concentration to 0.1 mM not only increased the K0.5 [NH4 (+)] of hGDH2, but also introduced a positive cooperative binding phenomenon in this isoenzyme. Hence, intra-mitochondrial acidification, as occurring in astrocytes during glutamatergic transmission should favor the oxidative deamination of glutamate. Similar considerations apply to the handling of glutamate by the proximal convoluted tubules of the kidney during systemic acidosis. The reverse could apply for conditions of local or systemic hyperammonemia or alkalosis.


Assuntos
Difosfato de Adenosina/metabolismo , Amônia/metabolismo , Glutamato Desidrogenase/metabolismo , Baculoviridae/genética , Linhagem Celular , DNA Complementar/biossíntese , DNA Complementar/genética , Humanos , Concentração de Íons de Hidrogênio , Isoenzimas/metabolismo , Ácidos Cetoglutáricos/metabolismo , Cinética , Mitocôndrias Hepáticas/enzimologia , Mitocôndrias Hepáticas/metabolismo , NADP/metabolismo
3.
ASN Neuro ; 4(3)2012 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-22385215

RESUMO

We have previously investigated the relative roles of extracellular glucose and lactate as fuels for glutamatergic neurons during synaptic activity. The conclusion from these studies was that cultured glutamatergic neurons utilize glucose rather than lactate during NMDA (N-methyl-d-aspartate)-induced synaptic activity and that lactate alone is not able to support neurotransmitter glutamate homoeostasis. Subsequently, a model was proposed to explain these results at the cellular level. In brief, the intermittent rises in intracellular Ca2+ during activation cause influx of Ca2+ into the mitochondrial matrix thus activating the tricarboxylic acid cycle dehydrogenases. This will lead to a lower activity of the MASH (malate-aspartate shuttle), which in turn will result in anaerobic glycolysis and lactate production rather than lactate utilization. In the present work, we have investigated the effect of an ionomycin-induced increase in intracellular Ca2+ (i.e. independent of synaptic activity) on neuronal energy metabolism employing 13C-labelled glucose and lactate and subsequent mass spectrometric analysis of labelling in glutamate, alanine and lactate. The results demonstrate that glucose utilization is positively correlated with intracellular Ca2+ whereas lactate utilization is not. This result lends further support for a significant role of glucose in neuronal bioenergetics and that Ca2+ signalling may control the switch between glucose and lactate utilization during synaptic activity. Based on the results, we propose a compartmentalized CiMASH (Ca2+-induced limitation of the MASH) model that includes intracellular compartmentation of glucose and lactate metabolism. We define pre- and post-synaptic compartments metabolizing glucose and glucose plus lactate respectively in which the latter displays a positive correlation between oxidative metabolism of glucose and Ca2+ signalling.


Assuntos
Sinalização do Cálcio/fisiologia , Metabolismo Energético/fisiologia , Glucose/metabolismo , Ácido Glutâmico/fisiologia , Ácido Láctico/metabolismo , Modelos Neurológicos , Neurônios/metabolismo , Transmissão Sináptica/fisiologia , Animais , Ionóforos de Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Líquido Intracelular/efeitos dos fármacos , Líquido Intracelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Células PC12 , Cultura Primária de Células , Ratos
4.
Neurotox Res ; 19(3): 496-510, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20480276

RESUMO

Cerebral hyperammonemia is believed to play a pivotal role in the development of hepatic encephalopathy (HE), a debilitating condition arising due to acute or chronic liver disease. In the brain, ammonia is thought to be detoxified via the activity of glutamine synthetase, an astrocytic enzyme. Moreover, it has been suggested that cerebral tricarboxylic acid (TCA) cycle metabolism is inhibited and glycolysis enhanced during hyperammonemia. The aim of this study was to characterize the ammonia-detoxifying mechanisms as well as the effects of ammonia on energy-generating metabolic pathways in a mouse neuronal-astrocytic co-culture model of the GABAergic system. We found that 5 mM ammonium chloride affected energy metabolism by increasing the neuronal TCA cycle activity and switching the astrocytic TCA cycle toward synthesis of substrate for glutamine synthesis. Furthermore, ammonia exposure enhanced the synthesis and release of alanine. Collectively, our results demonstrate that (1) formation of glutamine is seminal for detoxification of ammonia; (2) neuronal oxidative metabolism is increased in the presence of ammonia; and (3) synthesis and release of alanine is likely to be important for ammonia detoxification as a supplement to formation of glutamine.


Assuntos
Alanina/metabolismo , Amônia/toxicidade , Glucose/metabolismo , Neurônios/metabolismo , Estresse Oxidativo/fisiologia , Ácido gama-Aminobutírico/fisiologia , Amônia/antagonistas & inibidores , Animais , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Técnicas de Cocultura , Camundongos , Neurônios/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
5.
J Neurosci Res ; 67(1): 48-61, 2002 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-11754080

RESUMO

The localization of voltage-gated calcium channel (VGCC) alpha(1) subunits in cultured GABAergic mouse cortical neurons was examined by immunocytochemical methods. Ca(v)1.2 and Ca(v)1.3 subunits of L-type VGCCs were found in cell bodies and dendrites of GABA-immunopositive neurons. Likewise, the Ca(v)2.3 subunit of R-type VGCCs was expressed in a somatodendritic pattern. Ca(v)2.2 subunits of N-type channels were found exclusively in small varicosities that were identified as presynaptic nerve terminals based on their expression of synaptic marker proteins. Two splice variants of the Ca(v)2.1 subunit of P/Q-type VGCCs showed widely differing expression patterns. The rbA isoform displayed a purely somatodendritic staining pattern, whereas the BI isoform was confined to axon-like fibers and nerve terminals. The nerve terminals of these cultured GABAergic neurons express Ca(v)2.2 either alone or in combination with Ca(v)2.1 (BI isoform) but never express Ca(v)2.1 alone. The functional association between VGCCs and the neurotransmitter release machinery was probed using the FM1-43 dye-labeling technique. N-type VGCCs were found to be tightly coupled to exocytosis in these cultured cortical neurons, and P-type VGCCs were also important in a fraction of the cells. The predominant role of N-type VGCCs in neurotransmitter release and the specific localization of the BI isoform of Ca(v)2.1 in the nerve terminals of these neurons distinguish them from previously studied central neurons. The complementary localization patterns observed for two different isoforms of the Ca(v)2.1 subunits provide direct evidence for alternative splicing as a means of generating functional diversity among neuronal calcium channels.


Assuntos
Canais de Cálcio/metabolismo , Córtex Cerebral/metabolismo , Interneurônios/metabolismo , Inibição Neural/fisiologia , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/metabolismo , Processamento Alternativo/fisiologia , Animais , Canais de Cálcio Tipo N/metabolismo , Compartimento Celular/fisiologia , Células Cultivadas , Córtex Cerebral/citologia , Dendritos/metabolismo , Dendritos/ultraestrutura , Feminino , Feto , Imuno-Histoquímica , Interneurônios/citologia , Camundongos , Gravidez , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , Isoformas de Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA