Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 9(11): e113701, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25415380

RESUMO

PURPOSE: It is known that endothelial cells in the kidney are also strongly VEGF-dependent. Whether intravitreal drugs can be detected within the glomeruli or affect VEGF in glomerular podocytes is not known. Therefore, the aim of this pilot study was to investigate the effects of a single intravitreal injection of aflibercept and ranibizumab on glomeruli of monkeys. METHODS: The kidneys of eight cynomolgus monkeys, which were intravitreally injected either with 2 mg of aflibercept or with 0.5 mg of ranibizumab, were investigated one and seven days after injection. Two animals served as controls. The distribution of aflibercept, ranibizumab and VEGF was evaluated using anti-Fc- or anti-F(ab)-fragment and anti-VEGF antibodies respectively. The ratio of stained area/nuclei was calculated using a semi-quantitative computer assisted method. Glomerular endothelial cell fenestration was quantified in electron microscopy using a systematic uniform random sampling protocol and estimating the ratio of fenestrae per µm. RESULTS: Compared to the controls, the anti-VEGF stained area/nuclei ratio of the ranibizumab-treated animals showed no significant changes whereas the stained areas of the aflibercept-treated monkeys showed a significant decrease post-treatment. Immune reactivity (IR) against aflibercept or ranibizumab was detected in aflibercept- or ranibizumab treated animals respectively. The number of fenestrations of the glomerular endothelial cells has shown no significant differences except one day after aflibercept injection in which the number was increased. CONCLUSION: Surprisingly, both drugs could be detected within the capillaries of the glomeruli. After a single intravitreal injection of aflibercept, VEGF IR in the podocytes was significantly reduced compared to controls. Ranibizumab injection had no significant effect on the glomeruli's VEGF level. Whether this is caused by aflibercept's higher affinity to VEGF or because it is used in a higher stoichiometric concentration compared to ranibizumab remains to be investigated.


Assuntos
Inibidores da Angiogênese , Glomérulos Renais/metabolismo , Ranibizumab , Receptores de Fatores de Crescimento do Endotélio Vascular , Proteínas Recombinantes de Fusão , Inibidores da Angiogênese/efeitos adversos , Inibidores da Angiogênese/farmacocinética , Inibidores da Angiogênese/farmacologia , Animais , Avaliação Pré-Clínica de Medicamentos , Feminino , Injeções Intravítreas , Macaca fascicularis , Masculino , Ranibizumab/efeitos adversos , Ranibizumab/farmacocinética , Ranibizumab/farmacologia , Receptores de Fatores de Crescimento do Endotélio Vascular/efeitos adversos , Receptores de Fatores de Crescimento do Endotélio Vascular/farmacocinética , Receptores de Fatores de Crescimento do Endotélio Vascular/farmacologia , Proteínas Recombinantes de Fusão/efeitos adversos , Proteínas Recombinantes de Fusão/farmacocinética , Proteínas Recombinantes de Fusão/farmacologia
2.
J Photochem Photobiol B ; 90(2): 113-20, 2008 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-18203614

RESUMO

To investigate the effects of zinc supplementation on human amelanotic (ARPE-19) and native pigmented retinal pigment epithelial cells (hRPE) under normal light conditions and after ultraviolet A light exposure. hRPE cells, containing both melanin and lipofuscin granules, were prepared from human donor eyes of 60-70 year old patients. Cells of the amelanotic ARPE-19 cell line and pigmented hRPE cells were treated with zinc chloride and subjected to oxidative stress by UV-A irradiation. Intracellular H(2)O(2) formation was measured using a fluorescence oxidation assay. Additionally, apoptosis and viability assays were performed. Control cells were treated identically except for irradiation and zinc supplementation. Under normal light conditions, zinc treated hRPE cells produced less H(2)O(2) than unsupplemented hRPE cells. Viability and apoptosis events did not change. After UV-A irradiation, ARPE and hRPE cells were greatly impaired in all tests performed compared to the non-irradiated controls. No differences were found after zinc supplementation. hRPE cells showed a higher apoptosis and mortality rate than non-pigmented cells when stressed by UV-A light. ARPE cells never showed any zinc related effects. In contrast, without irradiation, zinc supplementation reduced H(2)O(2) production in pigmented hRPE cells slightly. We did not find any zinc effect in irradiated hRPE cells. After UV light exposure, pigmented cells showed a higher apoptosis and mortality than cells lacking any pigmentation. We conclude that cells with pigmentation consisting of melanin and lipofuscin granules have more prooxidative than antioxidative capacity when stressed by UV light exposure compared to cells lacking any pigmentation.


Assuntos
Senescência Celular , Estresse Oxidativo/efeitos da radiação , Epitélio Pigmentado Ocular/patologia , Pigmentação , Raios Ultravioleta/efeitos adversos , Zinco/farmacologia , Idoso , Apoptose , Sobrevivência Celular , Humanos , Peróxido de Hidrogênio , Pessoa de Meia-Idade , Epitélio Pigmentado Ocular/efeitos dos fármacos , Epitélio Pigmentado Ocular/efeitos da radiação
3.
Invest Ophthalmol Vis Sci ; 47(11): 4983-9, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17065517

RESUMO

PURPOSE: Artificial retinal detachment is increasingly used in submacular surgery. However, overcoming physiological retinal adhesiveness by subretinal fluid injection is suspected to cause cellular damage and thus to limit visual rehabilitation. This experimental study was designed to examine the ultrastructural changes induced by retinal detachment under vitrectomy conditions and to evaluate factors that reduce adhesiveness and minimize cellular damage. METHODS: Twenty-one pigmented rabbits underwent vitrectomy, and the vitreous cavity was perfused for 10 minutes with various solutions. These included variations in osmolarity (314 and 500 mOsM), Ca(2+) ion concentration (Ca(2+)-supplemented, low Ca(2+), active Ca(2+) deprivation via 1 mM EDTA), temperature (19 degrees C and 34 degrees C), and ischemia (5 minutes). Nonvitrectomized eyes served as the control. Consecutively, an artificial bleb detachment was created underneath the visual streak by injecting 1 mL of buffered saline solution subretinally. Eyes were enucleated within 3 minutes, fixed with 2% glutaraldehyde/0.1 M cacodylate buffer (pH 7.4) containing 100 mM sucrose and processed for transmission electron microscopy and scanning electron microscopy. RESULTS: If a Ca(2+)-containing standard solution was used during vitrectomy, retinal adhesiveness was strong, and a forced bleb detachment caused substantial cellular damage characterized by swollen and fragmented photoreceptor outer segments and disruption of retinal pigment epithelial cells. Use of a Ca(2+)-free solution moderately reduced the adhesive strength with consequently less ultrastructural damage. Active Ca(2+)-deprivation further reduced the retinal adhesion, but may have induced damage as suggested by intracellular vacuolization. Hyperosmolarity and ischemic conditions had toxic effects on both the photoreceptors and RPE cells. In contrast, the use of a preheated Ca(2+)-free solution (34 degrees C) substantially reduced retinal adhesiveness under vitrectomy conditions and hence ultrastructural damage. CONCLUSIONS: Artificial retinal detachment causes substantial ultrastructural damage in eyes with physiological retinal adhesiveness if performed under vitrectomy conditions similar to surgery in humans. The use of a preheated Ca(2+)-free physiologic saline solution seems to be suitable to reduce retinal adhesion sufficiently, without causing significant cellular damage.


Assuntos
Retina/ultraestrutura , Descolamento Retiniano/patologia , Adesividade , Animais , Cálcio/farmacologia , Temperatura Alta , Isquemia/metabolismo , Soluções Isotônicas , Microscopia Eletrônica de Varredura , Concentração Osmolar , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/ultraestrutura , Epitélio Pigmentado Ocular/metabolismo , Epitélio Pigmentado Ocular/ultraestrutura , Coelhos , Retina/metabolismo , Vitrectomia
4.
Pigment Cell Res ; 17(5): 515-8, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15357838

RESUMO

Age-related macular degeneration (AMD) is more prevalent among the elderly Caucasians than in Africans. A significant association between light iris colour, fundus pigmentation and incidence of AMD is reported, suggesting a possible correlation with melanin pigment. Zinc is known to bind to melanin in pigmented tissues and to enhance antioxidant capacity by function as a cofactor or gene expression factor of antioxidant enzymes in the eye. In this in vitro study, we investigated the uptake and storage of zinc in human irides. Irides of blue and brown human eyes were used. The number of melanocytes was measured. Tissues without any treatment served as controls. The irides were incubated with 100 microM zinc chloride in culture medium for 24 h. Specimens of the tissues were stored for the uptake examination. The remained pieces were further incubated for 3 and 7 d to investigate the storage of zinc. The concentration of zinc was measured by inductively coupled plasma mass spectrometry (ICP-MS). Melanocytes count was significantly higher in the brown tissues (P < 0.0001). Zinc concentration of blue coloured irides after 24 h zinc treatment was close to the controls. We did not observe any significant storing. In contrast, the concentration of zinc in brown irides was significantly increased after 24 h (P < or = 0.01) and remained at a high level for 7 d. The uptake of zinc is likely dependent on the amount of pigmentation in human iris. Therefore, we assume that in patients suffering from AMD the degree of pigmentation of the irides and eventually fundi should be under consideration when the patients are treated with zinc supplementation.


Assuntos
Cor de Olho/fisiologia , Iris/metabolismo , Melaninas/metabolismo , Melanócitos/metabolismo , Zinco/metabolismo , Antioxidantes/metabolismo , Transporte Biológico/fisiologia , Regulação da Expressão Gênica/fisiologia , Humanos , Iris/patologia , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Degeneração Macular/terapia , Melanócitos/patologia , Técnicas de Cultura de Órgãos , Zinco/farmacologia , Zinco/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA