Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 19(1): e0296427, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38165864

RESUMO

Breeding for higher fertility has resulted in a higher number of low birthweight (LBW) piglets. It has been shown that LBW piglets grow slower than normal birthweight (NBW) littermates. Differences in growth performance have been associated with impaired small intestinal development. In suckling and weaning piglets, glutamine (Gln) supplementation has been associated with improved growth and intestinal development. This study was designed to examine the effects of oral Gln supplementation on growth and small intestinal parameters in LBW and NBW suckling piglets. At birth (day 0), a total of 72 LBW (1.10 ± 0.06 kg) and 72 NBW (1.51 ± 0.06) male piglets were selected. At day 1, litters were standardized to 12 piglets, and experimental piglets supplemented daily with either Gln (1 g/kg BW) or isonitrogenous amounts of Alanine (Ala) as control (1.22 g/kg BW) until day 12. Creep feed was offered from day 14 onward. Subgroups of piglets were euthanized at days 5, 12, and 26 for the analyses of jejunal morphometry, cellular proliferation, glutathione concentration and transcript abundance of tight junction proteins. From age day 11 to 21, Gln supplemented LBW (LBW-Gln) piglets were heavier than Ala supplemented LBW (LBW-Ala) littermates (P = 0.034), while NBW piglets were heavier until age day 26 compared to LBW littermates. Villus height was higher in LBW-Gln compared to LBW-Ala on age day 12 (P = 0.031). Sporadic differences among supplementation and birthweight groups were detected for jejunal cellular proliferation, cellular population and glutathione concentration, whereas age was the most dominant factor. These results show that Gln supplementation improved the growth of LBW piglets compared to LBW-Ala beyond the termination of Gln supplementation, but this was not associated with consistent effects on selected parameters of jejunal development.


Assuntos
Suplementos Nutricionais , Glutamina , Animais , Masculino , Suínos , Glutamina/farmacologia , Peso ao Nascer , Desmame , Suplementos Nutricionais/análise , Alanina , Proliferação de Células , Hiperplasia , Glutationa
2.
Microorganisms ; 10(10)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36296176

RESUMO

Mortality, impaired development and metabolic dysfunctions of suckling low-birthweight piglets may be influenced by modulating the intestinal microbiome through glutamine supplementation. Therefore, this study examined whether glutamine supplementation may affect the colonic development and microbiome composition of male low- and normal-birthweight piglets at 5 and 12 days of age. Suckling piglets were supplemented orally with glutamine or alanine. Colonic digesta samples were obtained for 16S rDNA sequencing, determination of bacterial metabolites and histomorphological tissue analyses. Glutamine-supplemented piglets had lower concentrations of cadaverine and spermidine in the colonic digesta (p < 0.05) and a higher number of CD3+ colonic intraepithelial lymphocytes compared to alanine-supplemented piglets (p < 0.05). Low-birthweight piglets were characterised by a lower relative abundance of Firmicutes, the genera Negativibacillus and Faecalibacterium and a higher abundance of Alistipes (p < 0.05). Concentrations of cadaverine and total biogenic amines (p < 0.05) and CD3+ intraepithelial lymphocytes (p < 0.05) were lower in low- compared with normal-birthweight piglets. In comparison to the factor age, glutamine supplementation and birthweight were associated with minor changes in microbial and histological characteristics of the colon, indicating that ontogenetic factors play a more important role in intestinal development.

3.
PLoS One ; 17(4): e0267357, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35476806

RESUMO

BACKGROUND: It has been shown that small intestine development in low birth weight (LBW) piglets is impaired. Glutamine (Gln) has been reported to improve piglet health and intestinal function in weaned piglets, but data is scarce in suckling piglets. This study was conducted to investigate the effects of oral Gln supplementation compared to Alanine (Ala) on jejunal development and function in 5 and 12 d old male LBW and normal birth weight (NBW) suckling piglets. RESULTS: Gln had no effect on the jejunal morphology, development, tissue and digesta amino acid profiles and mRNA abundance of genes involved in amino acid transport, metabolism, glutathione synthesis in LBW piglets when compared to Ala supplementation and birth weight controls at 5 and 12 d. Only the concentration of Gln in jejunal tissue was higher in NBW piglets supplemented with Gln compared to Ala at 5 d (P < 0.05). A comparison of the birth weight groups showed no differences between LBW and NBW piglets at 5 and 12 d in any parameter. Jejunal crypt depth, villus height / width, tunica muscularis thickness, number of goblet and IgA positive cells, the ratio of jejunal RNA to DNA and the concentration of DNA, protein and RNA changed (P < 0.05) from 5 compared to 12 d. The concentrations of several free, and protein bound amino acids as well as amino metabolites differed between age groups in jejunal tissue but the digesta concentrations were affected to a lesser extent. CONCLUSIONS: Oral Gln supplementation to suckling male piglets over the first 12 d of life was not associated with changes in jejunal parameters measured in this study. The absence of effects may indicate that Gln is absorbed as well as metabolized in the upper intestinal tract and thus could benefit intestinal development at a more proximal location.


Assuntos
Aminoácidos , Glutamina , Animais , Peso ao Nascer , Suplementos Nutricionais , Glutamina/farmacologia , Humanos , Recém-Nascido de Baixo Peso , Recém-Nascido , Masculino , RNA Mensageiro/genética , Suínos
4.
Br J Nutr ; 128(12): 2330-2340, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-35144703

RESUMO

Low birth weight (LBW) neonates show impaired growth compared with normal birth weight (NBW) neonates. Glutamine (Gln) supplementation benefits growth of weaning piglets, while the effect on neonates is not sufficiently clear. We examined the effect of neonatal Gln supplementation on piglet growth, milk intake and metabolic parameters. Sow-reared pairs of newborn LBW (0·8-1·2 kg) and NBW (1·4-1·8 kg) male piglets received Gln (1 g/kg body mass (BM)/d; Gln-LBW, Gln-NBW; n 24/group) or isonitrogenous alanine (1·22 g/kg BM/d; Ala-LBW; Ala-NBW; n 24/group) supplementation at 1-5 or 1-12 d of age (daily in three equal portions at 07:00, 12:00 and 17:00 by syringe feeding). We measured piglet BM, milk intake (1, 11-12 d), plasma metabolite, insulin, amino acid (AA) and liver TAG concentrations (5, 12 d). The Gln-LBW group had higher BM (+7·5%, 10 d, P = 0·066; 11-12 d, P < 0·05) and milk intake (+14·7%, P = 0·015) than Ala-LBW. At 5 d, Ala-LBW group had higher plasma TAG (+34·7%, P < 0·1) and lower carnosine (-22·5%, P < 0·05) than Ala-NBW and Gln-LBW, and higher liver TAG (+66·9%, P = 0·029) than Ala-NBW. At 12 d, plasma urea was higher (+37·5%, P < 0·05) with Gln than Ala supplementation. Several proteinogenic AA in plasma were lower (P < 0·05) in Ala-NBW v. Gln-NBW. Plasma arginine was higher (P < 0·05) in Gln-NBW v Ala-NBW piglets (5, 12 d). Supplemental Gln moderately improved growth and milk intake and affected lipid metabolism in LBW piglets and AA metabolism in NBW piglets, suggesting effects on intestinal and liver function.


Assuntos
Suplementos Nutricionais , Glutamina , Animais , Suínos , Feminino , Masculino , Humanos , Recém-Nascido , Peso ao Nascer , Recém-Nascido de Baixo Peso , Aminoácidos
5.
Front Vet Sci ; 8: 633898, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34235195

RESUMO

Piglets with low birth weight (LBW) usually have reduced muscle mass and increased lipid deposition compared with their normal-birth-weight (NBW) littermates. Supplementation of piglets with amino acids during the first days of life may improve muscle growth and simultaneously alter the intramuscular lipid deposition. The aim of the current study was to investigate the influence of glutamine (Gln) supplementation during the early suckling period on lipid deposition in the longissimus muscle (MLD) and the role of different perilipin (PLIN) family members in this process. Four groups were generated consisting of 72 male LBW piglets and 72 NBW littermates. Piglets were supplemented with either 1 g Gln/kg body weight or an isonitrogenous amount of alanine (Ala) between days post natum (dpn) 1 and 12. Twelve piglets per group were slaughtered at 5, 12, and 26 dpn, and muscle tissue was collected. Perilipins were localized by immunohistochemistry in muscle sections. The mRNA and protein abundances of PLIN family members and related lipases were quantified by quantitative RT-PCR (qPCR) and western blots, respectively. While PLIN1 was localized around lipid droplets in mature and developing adipocytes, PLIN2 was localized at intramyocellular lipid droplets, PLIN3 and 4 at cell membranes of muscle fibers and adipocytes, and PLIN5 in the cytoplasm of undefined cells. The western blot results indicated higher protein abundances of PLIN2, 3, 4, and 5 in LBW piglets (p < 0.05) at 5 dpn compared with their NBW littermates independent of supplementation, while not directly reflecting the mRNA expression levels. The mRNA abundance of PLIN2 was lower while PLIN4 was higher in piglets at 26 dpn in comparison with piglets at 5 dpn (p < 0.01). Relative mRNA expression of LPL and CGI-58 was lowest in piglets at 5 dpn (p < 0.001). However, ATGL mRNA was not influenced by birth weight or supplementation, but the Spearman correlation coefficient analysis revealed close correlations with PLIN2, 4, and 5 mRNA at 5 and 26 dpn (r > 0.5, p < 0.001). The results indicated the importance of birth weight and age for intramuscular lipid deposition and different roles of PLIN family members in this process, but no clear modulating effect of Gln supplementation.

6.
Sci Rep ; 11(1): 13432, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34183762

RESUMO

Muscle growth of low birth weight (LBW) piglets may be improved with adapted nutrition. This study elucidated effects of glutamine (Gln) supplementation on the cellular muscle development of LBW and normal birth weight (NBW) piglets. Male piglets (n = 144) were either supplemented with 1 g Gln/kg body weight or an isonitrogeneous amount of alanine (Ala) between postnatal day 1 and 12 (dpn). Twelve piglets per group were slaughtered at 5, 12 and 26 dpn, one hour after injection with Bromodeoxyuridine (BrdU, 12 mg/kg). Muscle samples were collected and myogenic cells were isolated and cultivated. Expression of muscle growth related genes was quantified with qPCR. Proliferating, BrdU-positive cells in muscle sections were detected with immunohistochemistry indicating different cell types and decreasing proliferation with age. More proliferation was observed in muscle tissue of LBW-GLN than LBW-ALA piglets at 5 dpn, but there was no clear effect of supplementation on related gene expression. Cell culture experiments indicated that Gln could promote cell proliferation in a dose dependent manner, but expression of myogenesis regulatory genes was not altered. Overall, Gln supplementation stimulated cell proliferation in muscle tissue and in vitro in myogenic cell culture, whereas muscle growth regulatory genes were barely altered.


Assuntos
Suplementos Nutricionais , Glutamina/farmacologia , Transtornos do Crescimento/veterinária , Músculo Esquelético/efeitos dos fármacos , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Doenças dos Suínos/tratamento farmacológico , Suínos/crescimento & desenvolvimento , Alanina/farmacologia , Animais , Animais Lactentes , Peso ao Nascer , Bromodesoxiuridina , Divisão Celular/efeitos dos fármacos , Células Cultivadas , Meios de Cultura/farmacologia , Replicação do DNA , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Glutamina/uso terapêutico , Transtornos do Crescimento/tratamento farmacológico , Masculino , Proteínas Musculares/biossíntese , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Células Satélites de Músculo Esquelético/metabolismo
7.
Animals (Basel) ; 10(11)2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33126436

RESUMO

Adapted nutrition can improve the growth of low birth weight (LBW) piglets. Since maternal milk is thought to provide insufficient glutamine (Gln) for LBW piglets, the current study investigated the influence of Gln supplementation during the early suckling period on development and lipid deposition in skeletal muscle. The weight differences between LBW and normal birth weight (NBW) littermates persisted from birth to slaughter (p < 0.001). However, intramuscular Gln and Ala concentrations were altered in piglets according to the supplementation (p < 0.01). There were larger muscle fibers (p = 0.048) in Gln-supplemented piglets. Capillarization or nuclei number per muscle fiber was not influenced by birth weight (BiW) or Gln supplementation. Abundance of myosin heavy chain (MYH) isoforms was slightly altered by Gln supplementation. LBW piglets had more lipid droplets than NBW piglets at day 5 of life in both muscles (p < 0.01). The differences decreased with age. Adipocyte development increased with age, but was not influenced by BiW or supplementation. The results indicate that BiW differences were accompanied by differences in lipid deposition and muscle fiber structure, suggesting a delayed development in LBW piglets. Supplementation with Gln may support piglets to overcome those disadvantages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA