Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Cell Res ; 1865(11 Pt A): 1598-1610, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30327201

RESUMO

ADAM17, a prominent member of the "Disintegrin and Metalloproteinase" (ADAM) family, controls vital cellular functions through cleavage of transmembrane substrates including TGF-alpha, Amphiregulin (AREG) and TNF-Receptor 1 (TNFR1). We recently presented evidence that surface exposure of phosphatidylserine (PS) is pivotal for ADAM17 to exert sheddase activity. Anoctamin-6 (ANO6) has Ca2+-dependent phospholipid scramblase activity and it followed that the functions of ANO6 and ADAM17 might be linked. We report that overexpression of ANO6 in HEK293T cells led to increased Ca2+-mediated PS-exposure that was indeed accompanied by enhanced release of AREG and TGF-alpha. The effect was not observed when cells were treated with the PKC-dependent ADAM17 activator PMA. Transformation of cells with a constitutively active ANO6 mutant led to spontaneous PS-exposure and to the release of ADAM17-substrates in the absence of any stimuli. Inhibitor experiments indicated that ANO6-mediated enhancement of substrate cleavage simultaneously broadened the spectrum of participating metalloproteinases. In complementary experiments, siRNA-mediated downregulation of ANO6 was shown to decrease ionophore-mediated release of TNFR1 in human umbilical vein endothelial cells (HUVECs). We conclude that ANO6, by virtue of its scramblase activity, may play a role as an important regulator of the ADAM-network in the plasma membrane.


Assuntos
Proteínas ADAM/metabolismo , Anoctaminas/metabolismo , Fosfatidilserinas/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Fosfolipídeos/metabolismo , Proteína ADAM17/metabolismo , Cálcio/metabolismo , Membrana Celular/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Ionomicina/farmacologia , Modelos Biológicos , Mutação , Fator de Crescimento Transformador alfa/metabolismo
2.
Mol Pharmacol ; 71(1): 366-76, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17065237

RESUMO

According to previous reports, flavonoids and nutraceuticals correct defective electrolyte transport in cystic fibrosis (CF) airways. Traditional medicinal plants from China and Thailand contain phytoflavonoids and other bioactive compounds. We examined herbal extracts of the common Thai medicinal euphorbiaceous plant Phyllanthus acidus for their potential effects on epithelial transport. Functional assays by Ussing chamber, patch-clamping, double-electrode voltage-clamp and Ca2+ imaging demonstrate activation of Cl- secretion and inhibition of Na+ absorption by P. acidus. No cytotoxic effects of P. acidus could be detected. Mucosal application of P. acidus to native mouse trachea suggested transient and steady-state activation of Cl- secretion by increasing both intracellular Ca2+ and cAMP. These effects were mimicked by a mix of the isolated components adenosine, kaempferol, and hypogallic acid. Additional experiments in human airway cells and CF transmembrane conductance regulator (CFTR)-expressing BHK cells and Xenopus laevis oocytes confirm the results obtained in native tissues. Cl- secretion was also induced in tracheas of CF mice homozygous for Phe508del-CFTR and in Phe508del-CFTR homozygous human airway epithelial cells. Taken together, P. acidus corrects defective electrolyte transport in CF airways by parallel mechanisms including 1) increasing the intracellular levels of second messengers cAMP and Ca2+, thereby activating Ca2+-dependent Cl- channels and residual CFTR-Cl- conductance; 2) stimulating basolateral K+ channels; 3) redistributing cellular localization of CFTR; 4) directly activating CFTR; and 5) inhibiting ENaC through activation of CFTR. These combinatorial effects on epithelial transport may provide a novel complementary nutraceutical treatment for the CF lung disease.


Assuntos
Cloretos/metabolismo , Phyllanthus , Extratos Vegetais/farmacologia , Plantas Medicinais , Cálcio/metabolismo , Técnicas de Cultura de Células , Sobrevivência Celular , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Canais Epiteliais de Sódio/genética , Técnicas de Patch-Clamp , Folhas de Planta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA