Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Semin Immunol ; 68: 101778, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37267758

RESUMO

Recent developments in sequencing technologies, the computer and data sciences, as well as increasingly high-throughput immunological measurements have made it possible to derive holistic views on pathophysiological processes of disease and treatment effects directly in humans. We and others have illustrated that incredibly predictive data for immune cell function can be generated by single cell multi-omics (SCMO) technologies and that these technologies are perfectly suited to dissect pathophysiological processes in a new disease such as COVID-19, triggered by SARS-CoV-2 infection. Systems level interrogation not only revealed the different disease endotypes, highlighted the differential dynamics in context of disease severity, and pointed towards global immune deviation across the different arms of the immune system, but was already instrumental to better define long COVID phenotypes, suggest promising biomarkers for disease and therapy outcome predictions and explains treatment responses for the widely used corticosteroids. As we identified SCMO to be the most informative technologies in the vest to better understand COVID-19, we propose to routinely include such single cell level analysis in all future clinical trials and cohorts addressing diseases with an immunological component.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda , Imunidade Inata , Análise de Sistemas
2.
EMBO J ; 41(23): e110595, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36305367

RESUMO

Mammalian SWI/SNF/BAF chromatin remodeling complexes influence cell lineage determination. While the contribution of these complexes to neural progenitor cell (NPC) proliferation and differentiation has been reported, little is known about the transcriptional profiles that determine neurogenesis or gliogenesis. Here, we report that BCL7A is a modulator of the SWI/SNF/BAF complex that stimulates the genome-wide occupancy of the ATPase subunit BRG1. We demonstrate that BCL7A is dispensable for SWI/SNF/BAF complex integrity, whereas it is essential to regulate Notch/Wnt pathway signaling and mitochondrial bioenergetics in differentiating NPCs. Pharmacological stimulation of Wnt signaling restores mitochondrial respiration and attenuates the defective neurogenic patterns observed in NPCs lacking BCL7A. Consistently, treatment with an enhancer of mitochondrial biogenesis, pioglitazone, partially restores mitochondrial respiration and stimulates neuronal differentiation of BCL7A-deficient NPCs. Using conditional BCL7A knockout mice, we reveal that BCL7A expression in NPCs and postmitotic neurons is required for neuronal plasticity and supports behavioral and cognitive performance. Together, our findings define the specific contribution of BCL7A-containing SWI/SNF/BAF complexes to mitochondria-driven NPC commitment, thereby providing a better understanding of the cell-intrinsic transcriptional processes that connect metabolism, neuronal morphogenesis, and cognitive flexibility.


Assuntos
Diferenciação Celular , Proteínas dos Microfilamentos , Células-Tronco Neurais , Animais , Camundongos , Adenosina Trifosfatases/metabolismo , Montagem e Desmontagem da Cromatina , Metabolismo Energético , Mitocôndrias/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas dos Microfilamentos/metabolismo , Células-Tronco Neurais/citologia
3.
Gastroenterology ; 159(6): 2130-2145.e5, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32805279

RESUMO

BACKGROUND & AIMS: After birth, the immune system matures via interactions with microbes in the gut. The S100 calcium binding proteins S100A8 and S100A9, and their extracellular complex form, S100A8-A9, are found in high amounts in human breast milk. We studied levels of S100A8-A9 in fecal samples (also called fecal calprotectin) from newborns and during infancy, and their effects on development of the intestinal microbiota and mucosal immune system. METHODS: We collected stool samples (n = 517) from full-term (n = 72) and preterm infants (n = 49) at different timepoints over the first year of life (days 1, 3, 10, 30, 90, 180, and 360). We measured levels of S100A8-A9 by enzyme-linked immunosorbent assay and analyzed fecal microbiomes by 16S sRNA gene sequencing. We also obtained small and large intestine biopsies from 8 adults and 10 newborn infants without inflammatory bowel diseases (controls) and 8 infants with necrotizing enterocolitis and measured levels of S100A8 by immunofluorescence microscopy. Children were followed for 2.5 years and anthropometric data and medical information on infections were collected. We performed studies with newborn C57BL/6J wild-type and S100a9-/- mice (which also lack S100A8). Some mice were fed or given intraperitoneal injections of S100A8 or subcutaneous injections of Staphylococcus aureus. Blood and intestine, mesenterial and celiac lymph nodes were collected; cells and cytokines were measured by flow cytometry and studied in cell culture assays. Colon contents from mice were analyzed by culture-based microbiology assays. RESULTS: Loss of S100A8 and S100A9 in mice altered the phenotypes of colonic lamina propria macrophages, compared with wild-type mice. Intestinal tissues from neonatal S100-knockout mice had reduced levels of CX3CR1 protein, and Il10 and Tgfb1 mRNAs, compared with wild-type mice, and fewer T-regulatory cells. S100-knockout mice weighed 21% more than wild-type mice at age 8 weeks and a higher proportion developed fatal sepsis during the neonatal period. S100-knockout mice had alterations in their fecal microbiomes, with higher abundance of Enterobacteriaceae. Feeding mice S100 at birth prevented the expansion of Enterobacteriaceae, increased numbers of T-regulatory cells and levels of CX3CR1 protein and Il10 mRNA in intestine tissues, and reduced body weight and death from neonatal sepsis. Fecal samples from term infants, but not preterm infants, had significantly higher levels of S100A8-A9 during the first 3 months of life than fecal samples from adults; levels decreased to adult levels after weaning. Fecal samples from infants born by cesarean delivery had lower levels of S100A8-A9 than from infants born by vaginal delivery. S100 proteins were expressed by lamina propria macrophages in intestinal tissues from infants, at higher levels than in intestinal tissues from adults. High fecal levels of S100 proteins, from 30 days to 1 year of age, were associated with higher abundance of Actinobacteria and Bifidobacteriaceae, and lower abundance of Gammaproteobacteria-particularly opportunistic Enterobacteriaceae. A low level of S100 proteins in infants' fecal samples associated with development of sepsis and obesity by age 2 years. CONCLUSION: S100A8 and S100A9 regulate development of the intestinal microbiota and immune system in neonates. Nutritional supplementation with these proteins might aide in development of preterm infants and prevent microbiota-associated disorders in later years.


Assuntos
Calgranulina A/metabolismo , Calgranulina B/metabolismo , Disbiose/imunologia , Microbioma Gastrointestinal/imunologia , Adulto , Animais , Biópsia , Calgranulina A/administração & dosagem , Calgranulina A/análise , Calgranulina B/análise , Calgranulina B/genética , Pré-Escolar , Colo/microbiologia , Colo/patologia , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Disbiose/microbiologia , Disbiose/prevenção & controle , Enterocolite Necrosante/epidemiologia , Enterocolite Necrosante/imunologia , Enterocolite Necrosante/microbiologia , Enterocolite Necrosante/prevenção & controle , Fezes/química , Fezes/microbiologia , Feminino , Seguimentos , Microbioma Gastrointestinal/genética , Humanos , Imunidade nas Mucosas , Lactente , Recém-Nascido , Recém-Nascido Prematuro/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Knockout , Obesidade/epidemiologia , Obesidade/imunologia , Obesidade/microbiologia , Obesidade/prevenção & controle , RNA Ribossômico 16S/genética , Sepse/epidemiologia , Sepse/imunologia , Sepse/microbiologia , Sepse/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA