Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Syst Biol ; 17(8): e10239, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34339582

RESUMO

Understanding the mechanism of SARS-CoV-2 infection and identifying potential therapeutics are global imperatives. Using a quantitative systems pharmacology approach, we identified a set of repurposable and investigational drugs as potential therapeutics against COVID-19. These were deduced from the gene expression signature of SARS-CoV-2-infected A549 cells screened against Connectivity Map and prioritized by network proximity analysis with respect to disease modules in the viral-host interactome. We also identified immuno-modulating compounds aiming at suppressing hyperinflammatory responses in severe COVID-19 patients, based on the transcriptome of ACE2-overexpressing A549 cells. Experiments with Vero-E6 cells infected by SARS-CoV-2, as well as independent syncytia formation assays for probing ACE2/SARS-CoV-2 spike protein-mediated cell fusion using HEK293T and Calu-3 cells, showed that several predicted compounds had inhibitory activities. Among them, salmeterol, rottlerin, and mTOR inhibitors exhibited antiviral activities in Vero-E6 cells; imipramine, linsitinib, hexylresorcinol, ezetimibe, and brompheniramine impaired viral entry. These novel findings provide new paths for broadening the repertoire of compounds pursued as therapeutics against COVID-19.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Avaliação Pré-Clínica de Medicamentos/métodos , Internalização do Vírus/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Anti-Inflamatórios não Esteroides/farmacologia , COVID-19/genética , COVID-19/virologia , Chlorocebus aethiops , Reposicionamento de Medicamentos , Células HEK293 , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Imidazóis/farmacologia , Pirazinas/farmacologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade , Xinafoato de Salmeterol/farmacologia , Células Vero
2.
SLAS Discov ; 24(6): 669-681, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30802412

RESUMO

Mcm2-7 is the molecular motor of eukaryotic replicative helicase, and the regulation of this complex is a major focus of cellular S-phase regulation. Despite its cellular importance, few small-molecule inhibitors of this complex are known. Based upon our genetic analysis of synthetic growth defects between mcm alleles and a range of other alleles, we have developed a high-throughput screening (HTS) assay using a well-characterized mcm mutant (containing the mcm2DENQ allele) to identify small molecules that replicate such synthetic growth defects. During assay development, we found that aphidicolin (inhibitor of DNA polymerase alpha) and XL413 (inhibitor of the DNA replication-dependent kinase CDC7) preferentially inhibited growth of the mcm2DENQ strain relative to the wild-type parental strain. However, as both strains demonstrated some degree of growth inhibition with these compounds, small and variable assay windows can result. To increase assay sensitivity and reproducibility, we developed a strategy combining the analysis of cell growth kinetics with linear discriminant analysis (LDA). We found that LDA greatly improved assay performance and captured a greater range of synthetic growth inhibition phenotypes, yielding a versatile analysis platform conforming to HTS requirements.


Assuntos
Replicação do DNA/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala , Leveduras/efeitos dos fármacos , Leveduras/genética , Alelos , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Reprodutibilidade dos Testes , Mutações Sintéticas Letais , Leveduras/crescimento & desenvolvimento
3.
Antiviral Res ; 142: 136-140, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28342892

RESUMO

Acyclovir (ACV) and its derivatives have been highly effective for treating recurrent, lytic infections with Herpes Simplex Virus, type 1 (HSV-1), but searches for additional antiviral drugs are motivated by recent reports of resistance to ACV, particularly among immunocompromised patients. In addition, the relative neurotoxicity of ACV and its inability to prevent neurological sequelae among HSV-1 encephalitis survivors compel searches for new drugs to treat HSV-1 infections of the central nervous system (CNS). Primary drug screens for neurotropic viruses like HSV-1 typically utilize non-neuronal cell lines, but they may miss drugs that have neuron specific antiviral effects. Therefore, we compared the effects of a panel of conventional and novel anti-herpetic compounds in monkey epithelial (Vero) cells, human induced pluripotent stem cells (hiPSCs)-derived neural progenitor cells (NPCs) and hiPSC-derived neurons (N = 73 drugs). While the profiles of activity for the majority of the drugs were similar in all three tissues, Vero cells were less likely than NPCs to identify drugs with substantial inhibitory activity in hiPSC-derived neurons. We discuss the relative merits of each cell type for antiviral drug screens against neuronal infections with HSV-1.


Assuntos
Antivirais/toxicidade , Avaliação Pré-Clínica de Medicamentos , Herpes Simples/tratamento farmacológico , Herpesvirus Humano 1/efeitos dos fármacos , Hospedeiro Imunocomprometido/efeitos dos fármacos , Aciclovir/toxicidade , Animais , Sistema Nervoso Central/efeitos dos fármacos , Chlorocebus aethiops , Farmacorresistência Viral/efeitos dos fármacos , Herpes Simples/virologia , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Células-Tronco Pluripotentes/efeitos dos fármacos , Células Vero/efeitos dos fármacos
4.
J Biomol Screen ; 11(7): 743-54, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16973923

RESUMO

The authors describe the discovery of a new class of inhibitors to an essential Streptococcus pneumoniae cell wall biosyn-thesis enzyme, MurF, by a novel affinity screening method. The strategy involved screening very large mixtures of diverse small organic molecules against the protein target on the basis of equilibrium binding, followed by iterative ultrafiltration steps and ligand identification by mass spectrometry. Hits from any affinity-based screening method often can be relatively nonselective ligands, sometimes referred to as "nuisance" or "promiscuous" compounds. Ligands selective in their binding affinity for the MurF target were readily identified through electronic subtraction of an empirically determined subset of promiscuous compounds in the library without subsequent selectivity panels. The complete strategy for discovery and identification of novel specific ligands can be applied to all soluble protein targets and a wide variety of ligand libraries.


Assuntos
Antibacterianos/análise , Antibacterianos/farmacologia , Parede Celular/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Testes de Sensibilidade Microbiana , Peptídeo Sintases/antagonistas & inibidores , Streptococcus pneumoniae/enzimologia , Antibacterianos/química , Espectrometria de Massas
5.
J Biomol Screen ; 11(7): 755-64, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16956998

RESUMO

Kinase enzymes are involved in a vast array of biological processes associated with human disease; therefore, selective kinase inhibition by small molecules and therapeutic antibodies is an area of intense study. The authors show that drug candidates with immediate value for biological preclinical evaluation can be identified directly through ultra-efficient affinity screening of kinase enzymes and random compound mixtures. The screening process comprises sampling and trapping equilibrium binding between candidate ligands and protein in solution, followed by removal of unbound ligands via 3 rounds of ultrafiltration and direct identification of bound ligands by mass spectrometry. Evaluation of significant peaks is facilitated by automated integration and collation of the mass spectral data and import into custom software for analysis. One Chk1-selective ligand found by using this process is presented in detail. The compound is potent in both enzymatic and Chk1-dependent cellular assays, and specific contacts in the Chk1 active site are shown by X-ray crystallography.


Assuntos
Dano ao DNA , Avaliação Pré-Clínica de Medicamentos/métodos , Espectrometria de Massas/métodos , Inibidores de Proteínas Quinases/análise , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Sequência de Aminoácidos , Apoptose/efeitos dos fármacos , Quinase 1 do Ponto de Checagem , Doxorrubicina/farmacologia , Fase G2/efeitos dos fármacos , Humanos , Ligantes , Dados de Sequência Molecular , Inibidores de Proteínas Quinases/química , Proteínas Quinases/isolamento & purificação
6.
Curr Opin Drug Discov Devel ; 7(4): 411-6, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15338950

RESUMO

Contemporary, rational small-molecule lead discovery methods, comprising target identification, assay development, high-throughput screening (HTS), hit characterization and medicinal chemistry optimization, dominate early-stage drug discovery strategies in many pharmaceutical companies. There is a growing disparity between the increasing cost of funding these methods and the decreasing number of new drugs reaching the market. New strategies must be adopted to reverse this trend. The use of genomics- and proteomics-based target discovery efforts can aid the process by dramatically increasing the number of novel, more highly validated targets entering the discovery process, but HTS must meet this increased demand with faster, cheaper technologies. Although activity-based screening strategies are typically efficient, allowing one scientist to interrogate tens of thousands of compounds per day, affinity-based screening strategies can allow much greater efficiency in the overall process. Affinity-based methods can play a role in both facilitating the screening of a greater number of targets and in efficiently characterizing the primary hits discovered.


Assuntos
Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Tecnologia Farmacêutica/métodos , Avaliação Pré-Clínica de Medicamentos/economia , Avaliação Pré-Clínica de Medicamentos/tendências , Tecnologia Farmacêutica/economia , Tecnologia Farmacêutica/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA