Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Dairy Sci ; 100(6): 4539-4551, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28365118

RESUMO

The aim of this study was to determine the time course for adaptation of the reticulo-rumen, omasum, abomasum, and small intestine in response to an abrupt increase in the proportion of grain in the diet. Adaptive responses include tissue and digesta mass, small intestinal length, and brush border enzyme activity in the duodenum, proximal jejunum, and ileum. Twenty-five Holstein steers (213 ± 23 kg; 5 to 7 mo of age) were blocked by body weight, and within block were randomly assigned to 1 of 5 treatments: the control diet (CTRL; 92% chopped grass hay and 8% mineral and vitamin supplement on a dry matter basis) or a moderate grain diet (MGD; 50% chopped grass hay, 42% rolled barley grain, and 8% mineral and vitamin supplement) that was fed for 3 (MGD3), 7 (MGD7), 14 (MGD14), or 21 d (MGD21). Dry matter intake was limited to 2.25% of body weight to ensure that changes in dry matter intake did not confound the results. On the last day of the dietary exposure, steers were slaughtered 2 h after feeding. Reticulo-rumen tissue mass and ruminal epithelium mass in the ventral sac of the rumen were not affected by the MGD. Wet reticulo-ruminal digesta mass decreased from CTRL to MGD7 and then increased, but reticulo-ruminal digesta dry matter mass did not differ between treatments. Omasal mass, omasal tissue mass, and omasum digesta mass decreased linearly with the number of days fed MGD, but abomasal tissue mass tended to increase linearly. Duodenal tissue mass tended to increase linearly, and ileal length increased linearly with the number of days fed MGD. Lactase activity in the proximal jejunum increased linearly and maltase activity in duodenum tended to increase linearly with days fed MGD. Aminopeptidase N activity in the proximal jejunum increased cubically with days fed MGD, and dipeptidylpeptidase IV activity in ileum tended to decrease from CTRL to MGD14 and then tended to increase. Adaptation to a diet with a greater proportion of concentrate involves changes in the mass and length of regions of the gastrointestinal tract and brush border enzyme activity. These changes take place gradually over at least 3 wk.


Assuntos
Adaptação Fisiológica , Grão Comestível/metabolismo , Trato Gastrointestinal/anatomia & histologia , Intestino Delgado/fisiologia , Microvilosidades/enzimologia , Estômago de Ruminante/fisiologia , Abomaso/anatomia & histologia , Abomaso/fisiologia , Ração Animal , Animais , Dieta , Suplementos Nutricionais , Digestão , Intestino Delgado/anatomia & histologia , Intestino Delgado/enzimologia , Masculino , Omaso/anatomia & histologia , Omaso/fisiologia , Poaceae , Rúmen/anatomia & histologia , Rúmen/fisiologia , Estômago de Ruminante/anatomia & histologia , Fatores de Tempo , Oligoelementos/administração & dosagem , Vitaminas/administração & dosagem
2.
J Dairy Sci ; 98(2): 1204-13, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25529427

RESUMO

Urea transport (UT-B) proteins are known to facilitate urea movement across the ruminal epithelium; however, other mechanisms may be involved as well because inhibiting UT-B does not completely abolish urea transport. Of the aquaporins (AQP), which are a family of membrane-spanning proteins that are predominantly involved in the movement of water, AQP-3, AQP-7, and AQP-10 are also permeable to urea, but it is not clear if they contribute to urea transport across the ruminal epithelium. The objectives of this study were to determine (1) the functional roles of AQP and UT-B in the serosal-to-mucosal urea flux (Jsm-urea) across rumen epithelium; and (2) whether functional adaptation occurs in response to increased diet fermentability. Twenty-five Holstein steer calves (n=5) were assigned to a control diet (CON; 91.5% hay and 8.5% vitamin and mineral supplement) or a medium grain diet (MGD; 41.5% barley grain, 50% hay, and 8.5% vitamin and mineral) that was fed for 3, 7, 14, or 21 d. Calves were killed and ruminal epithelium was collected for mounting in Ussing chambers under short-circuit conditions and for analysis of mRNA abundance of UT-B and AQP-3, AQP-7, and AQP-10. To mimic physiologic conditions, the mucosal buffer (pH 6.2) contained no urea, whereas the serosal buffer (pH 7.4) contained 1 mM urea. The fluxes of (14)C-urea (Jsm-urea; 26 kBq/10 mL) and (3)H-mannitol (Jsm-mannitol; 37 kBq/10 mL) were measured, with Jsm-mannitol being used as an indicator of paracellular or hydrophilic movement. Serosal addition of phloretin (1 mM) was used to inhibit UT-B-mediated urea transport, whereas NiCl2 (1 mM) was used to inhibit AQP-mediated urea transport. Across treatments, the addition of phloretin or NiCl2 reduced the Jsm-urea from 116.5 to 54.0 and 89.5 nmol/(cm(2) × h), respectively. When both inhibitors were added simultaneously, Jsm-urea was further reduced to 36.8 nmol/(cm(2) × h). Phloretin-sensitive and NiCl2-sensitive Jsm-urea were not affected by diet. The Jsm-urea tended to increase linearly as the duration of adaptation to MGD increased, with the lowest Jsm-urea being observed in animals fed CON [107.7 nmol/(cm(2) × h)] and the highest for those fed the MGD for 21 d [144.2 nmol/(cm(2) × h)]. Phloretin-insensitive Jsm-urea tended to increase linearly as the duration of adaptation to MGD increased, whereas NiCl2-insensitive Jsm-urea tended to be affected by diet. Gene transcript abundance for AQP-3 and UT-B in ruminal epithelium increased linearly as the duration of MGD adaptation increased. For AQP-7 and AQP-10, gene transcript abundance in animals that were fed the MGD was greater compared with that of CON animals. These results demonstrate that both AQP and UT-B play significant functional roles in urea transport, and they may play a role in urea transport during dietary adaptation to fermentable carbohydrates.


Assuntos
Aquaporinas/metabolismo , Bovinos/metabolismo , Dieta/veterinária , Proteínas de Membrana Transportadoras/metabolismo , Rúmen/metabolismo , Ureia/metabolismo , Animais , Aquaporinas/antagonistas & inibidores , Aquaporinas/genética , Transporte Biológico , Reatores Biológicos , Carboidratos da Dieta/administração & dosagem , Carboidratos da Dieta/metabolismo , Suplementos Nutricionais , Grão Comestível , Epitélio/metabolismo , Fermentação , Masculino , Proteínas de Membrana Transportadoras/genética , Minerais/administração & dosagem , Mucosa , Níquel/farmacologia , Floretina/farmacologia , RNA Mensageiro/análise , Vitaminas/administração & dosagem , Transportadores de Ureia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA