Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 99(6): 068102, 2007 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-17930870

RESUMO

Thalamic circuits are able to generate state-dependent oscillations of different frequencies and degrees of synchronization. However, little is known about how synchronous oscillations, such as spindle oscillations in the thalamus, are organized in the intact brain. Experimental findings suggest that the simultaneous occurrence of spindle oscillations over widespread territories of the thalamus is due to the corticothalamic projections, as the synchrony is lost in the decorticated thalamus. In this Letter we study the influence of corticothalamic projections on the synchrony in a thalamic network, and uncover the underlying control mechanism, leading to a control method which is applicable for several types of oscillations in the central nervous system.


Assuntos
Córtex Cerebral/fisiologia , Sincronização Cortical , Modelos Neurológicos , Modelos Teóricos , Rede Nervosa/fisiologia , Tálamo/fisiologia , Eletroencefalografia , Humanos , Vias Neurais , Neurônios , Sono , Transmissão Sináptica
2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(3 Pt 1): 031908, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16605559

RESUMO

The information transfer in the thalamus is blocked dynamically during sleep, in conjunction with the occurrence of spindle waves. In order to describe the dynamic mechanisms which control the sensory transfer of information, it is necessary to have a qualitative model for the response properties of thalamic neurons. As the theoretical understanding of the mechanism remains incomplete, we analyze two modeling approaches for a recent experiment by Le Masson et al. [Nature (London) 417, 854 (2002)] on the thalamocortical loop. We use a conductance based model in order to motivate an extension of the Hindmarsh-Rose model, which mimics experimental observations of Le Masson et al. Typically, thalamic neurons possess two different firing modes, depending on their membrane potential. At depolarized potentials, the cells fire in a single spike mode and relay synaptic inputs in a one-to-one manner to the cortex. If the cell gets hyperpolarized, T-type calcium currents generate burst-mode firing which leads to a decrease in the spike transfer. In thalamocortical circuits, the cell membrane gets hyperpolarized by recurrent inhibitory feedback loops. In the case of reciprocally coupled excitatory and inhibitory neurons, inhibitory feedback leads to metastable self-sustained oscillations, which mask the incoming input, and thereby reduce the information transfer significantly.


Assuntos
Relógios Biológicos/fisiologia , Córtex Cerebral/fisiologia , Armazenamento e Recuperação da Informação/métodos , Rede Nervosa/fisiologia , Inibição Neural/fisiologia , Neurônios/fisiologia , Tálamo/fisiologia , Potenciais de Ação/fisiologia , Animais , Retroalimentação/fisiologia , Humanos , Memória/fisiologia , Vias Neurais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA