Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Steroid Biochem Mol Biol ; 232: 106331, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37244301

RESUMO

The role of vitamin D3 and its metabolites in cancer and especially as a treatment option has been widely disputed. Clinicians noting low serum 25-hydroxyvitamin D3 [25(OH)D3] levels in their patients, recommend vitamin D3 supplementation as a method of reducing the risk of cancer; however, data supporting this are inconsistent. These studies rely on systemic 25(OH)D3 as an indicator of hormone status, but 25(OH)D3 is further metabolized in the kidney and other tissues under regulation by several factors. This study examined if breast cancer cells also possess the ability to metabolize 25(OH)D3, and if so, whether the resulting metabolites are secreted locally; if this ability reflects ERα66 status; and if they possess vitamin D receptors (VDR). To address this question, estrogen receptor alpha (ERα) positive (MCF-7) and ERα negative (HCC38 and MDA-MB-231) breast cancer cell lines were examined for expression of ERα66, ERα36, CYP24A1, CYP27B1, and VDR as well as for local production of 24,25-dihydroxyvitamin D3 [24,25(OH)2D3] and 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] after treatment with 25(OH)D3. The results showed that independent of ER status, breast cancer cells express the enzymes CYP24A1 and CYP27B1, which are responsible for converting 25(OH)D3 into its dihydroxylated forms. Moreover, these metabolites are produced at levels comparable to the levels observed in blood. They are positive for VDR, indicating that they can respond to 1α,25(OH)2D3, which can upregulate CYP24A1. These findings suggest that vitamin D metabolites may contribute to the tumorigenicity of breast cancer via autocrine and/or paracrine mechanisms.


Assuntos
Neoplasias da Mama , Colecalciferol , Humanos , Feminino , Colecalciferol/farmacologia , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , Vitamina D3 24-Hidroxilase/genética , Vitamina D3 24-Hidroxilase/metabolismo , Neoplasias da Mama/tratamento farmacológico , Receptor alfa de Estrogênio , Vitamina D/farmacologia , Vitamina D/metabolismo , Receptores de Calcitriol/metabolismo
2.
J Orthop Res ; 39(9): 1908-1920, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33002223

RESUMO

Statement of Clinical Significance: There remains the need to develop materials and surfaces that can increase the rate of implant osseointegration. Though osteoanabolic agents, like bone morphogenetic protein (BMP), can provide signaling for osteogenesis, the appropriate design of implants can also produce an innate cellular response that may reduce or eliminate the need to use additional agents to stimulate bone formation. Studies show that titanium implant surfaces that mimic the physical properties of osteoclast resorption pits regulate cellular responses of bone marrow stromal cells (MSCs) by altering cell morphology, transcriptomes, and local factor production to increase their differentiation into osteoblasts without osteogenic media supplements required for differentiation of MSCs on tissue culture polystyrene (TCPS). The goal of this study was to determine how cells in contact with biomimetic implant surfaces regulate the microenvironment around these surfaces in vitro. Two different approaches were used. First, unidirectional signaling was assessed by treating human MSCs grown on TCPS with conditioned media from MSC cultures grown on Ti6Al4V biomimetic surfaces. In the second set of studies, bidirectional signaling was assessed by coculturing MSCs grown on mesh inserts that were placed into culture wells in which MSCs were grown on the biomimetic Ti6Al4V substrates. The results show that biomimetic Ti6Al4V surface properties induce MSCs to produce factors within 7 days of culture that stimulate MSCs not in contact with the surface to exhibit an osteoblast phenotype via endogenous BMP2 acting in a paracrine signaling manner.


Assuntos
Células-Tronco Mesenquimais , Titânio , Alumínio/metabolismo , Células da Medula Óssea , Diferenciação Celular , Células Cultivadas , Osteoblastos/metabolismo , Osteogênese , Propriedades de Superfície , Titânio/química , Vanádio
3.
Mol Cancer Res ; 19(1): 99-111, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33082240

RESUMO

Vitamin D3 and its metabolites have antitumorigenic properties in vitro and in vivo; however, clinical trials and retrospective studies on the effectiveness of vitamin D3 oral supplementation against cancer have been inconclusive. One reason for this may be that clinical trials ignore the complex vitamin D metabolome and the many active vitamin D3 metabolites present in the body. Recent work by our lab showed that 24R,25(OH)2D3, a vitamin D3 metabolite that is active in chondrocyte proliferation and differentiation, has antitumorigenic properties in estrogen receptor alpha-66 (ERα66)-positive (ER+) breast cancer, but not in ERα66-negative (ER-) breast cancer. Here we show that 24R,25(OH)2D3 is protumorigenic in an in vivo mouse model (NOD.Cg-PrkdcscidIl2rgtm1Wjl /SzJ (NSG) mice) of ER- breast cancer, causing greater tumor growth than in mice treated with vehicle alone. In vitro results indicate that the effect of 24R,25(OH)2D3 is via a membrane-associated mechanism involving ERs and phospholipase D. 24R,25(OH)2D3 increased proliferation and reduced apoptosis in ERα66-negative HCC38 breast cancer cells, and stimulated expression of metastatic markers. Overexpressing ESRI, which encodes ERα66, ERα46, and ERα36, reduced the proapoptotic response of ERα66- cells to 24R,25(OH)2D3, possibly by upregulating ERα66. Silencing ESR1 in ERα66+ cells increased apoptosis. This suggests 24R,25(OH)2D3 is differentially tumorigenic in cancers with different ERα isoform profiles. Antiapoptotic actions of 24R,25(OH)2D3 require ERα36 and proapoptotic actions require ERα66. IMPLICATIONS: These results suggest that 24R,25(OH)2D3, which is a major circulating metabolite of vitamin D, is functionally active in breast cancer and that the regulatory properties of 24R,25(OH)2D3 are dependent upon the relative expression of ERα66 and ERα36.


Assuntos
Neoplasias da Mama/genética , Receptor alfa de Estrogênio/metabolismo , Isoformas de Proteínas/metabolismo , Vitamina D/análogos & derivados , Animais , Neoplasias da Mama/patologia , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Vitamina D/metabolismo
4.
Steroids ; 150: 108447, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31302113

RESUMO

Vitamin D has long been prescribed as a supplement to breast cancer patients. This is partially motivated by data indicating that low serum vitamin D, measured as 25-hydroxyvitamin D3 [25(OH)D3], is associated with worsened cancer prognosis and decreased survival rates in cancer patients. However, clinical studies investigating the role of vitamin D supplementation in breast cancer treatment are largely inconclusive. One reason for this may be that many of these studies ignore the complexity of the vitamin D metabolome and the effects of these metabolites at the cellular level. Once ingested, vitamin D is metabolized into 37 different metabolites, including 25(OH)D3, which is the metabolite actually measured clinically, as well as 1,25(OH)2D3 and 24,25(OH)2D3. Recent work by our lab and others has demonstrated a role for 24R,25(OH)2D3, in the modulation of breast cancer tumors via an estrogen receptor α-dependent mechanism. This review highlights the importance of considering estrogen receptor status in vitamin d-associated prognostic studies of breast cancer and proposes a potential mechanism for 24R,25(OH)2D3 signaling in breast cancer cells.


Assuntos
24,25-Di-Hidroxivitamina D 3/farmacologia , Neoplasias da Mama/dietoterapia , Neoplasias da Mama/patologia , Receptores de Estrogênio/metabolismo , 24,25-Di-Hidroxivitamina D 3/metabolismo , Animais , Neoplasias da Mama/metabolismo , Feminino , Humanos , Neoplasias Mamárias Experimentais/dietoterapia , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia
5.
Biochim Biophys Acta Gen Subj ; 1863(10): 1498-1512, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31125679

RESUMO

BACKGROUND: Epidemiological studies indicate high serum 25(OH)D3 is associated with increased survival in breast cancer patients. Pre-clinical studies attributed this to anti-tumorigenic properties of its metabolite 1α,25(OH)2D3. However, 1α,25(OH)2D3 is highly calcemic and thus has a narrow therapeutic window. Here we propose another metabolite, 24R,25(OH)2D3, as an alternative non-calcemic vitamin D3 supplement. METHODS: NOD-SCID-IL2γR null female mice with MCF7 breast cancer xenografts in the mammary fat pad were treated with 24R,25(OH)2D3 and changes in tumor burden and metastases were assessed. ERα66+ MCF7 and T47D cells, and ERα66- HCC38 cells were treated with 24R,25(OH)2D3in vitro to assess effects on proliferation and apoptosis. Effects on migration and metastatic markers were assessed in MCF7. RESULTS: 24R,25(OH)2D3 reduced MCF7 tumor growth and metastasis in vivo. In vitro results indicate that this was not due to an anti-proliferative effect; 24R,25(OH)2D3 stimulated DNA synthesis in MCF7 and T47D. In contrast, markers of invasion and metastasis were decreased. 24R,25(OH)2D3 caused dose-dependent increases in apoptosis in MCF7 and T47D, but not HCC38 cells. Inhibitors to palmitoylation, caveolae integrity, phospholipase-D, and estrogen receptors (ER) demonstrate that 24R,25(OH)2D3 acts on MCF7 cells through caveolae-associated, phospholipase D-dependent mechanisms via cross-talk with ERs. CONCLUSION: These results indicate that 24R,25(OH)2D3 shows promise in treatment of breast cancer by stimulating tumor apoptosis and reducing metastasis. GENERAL SIGNIFICANCE: 24R,25(OH)2D3 regulates breast cancer cell survival through ER-associated mechanisms similar to 24R,25(OH)2D3 effects on chondrocytes. Thus, 24R,25(OH)2D3 may modulate cell survival in other estrogen-responsive cell types, and its therapeutic potential should be investigated in ER-associated pathologies.


Assuntos
24,25-Di-Hidroxivitamina D 3/metabolismo , Neoplasias da Mama/metabolismo , Animais , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Estradiol/administração & dosagem , Estradiol/farmacologia , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos NOD , Fosfolipase D/metabolismo , Receptores de Estrogênio/metabolismo , Transdução de Sinais
6.
Calcif Tissue Int ; 99(6): 625-637, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27501817

RESUMO

Direct metal laser sintering can produce porous Ti-6Al-4V orthopedic and dental implants. The process requires reduced resources and time and can provide greater structural control than machine manufacturing. Implants in bone are colonized by mesenchymal stem cells (MSCs), which can differentiate into osteoblasts and contribute to osseointegration. This study examined osteoblast differentiation and matrix mineralization of human MSCs cultured on laser-sintered Ti-6Al-4V constructs with varying porosity and at different time scales. 2D solid disks and low, medium and high porosity (LP, MP, and HP) 3D constructs based on a human trabecular bone template were laser sintered from Ti-6Al-4V powder and further processed to have micro- and nanoscale roughness. hMSCs exhibited greater osteoblastic differentiation and local factor production on all 3D porous constructs compared to 2D surfaces, which was sustained for 9 days without use of exogenous factors. hMSCs cultured for 8 weeks on MP constructs in osteogenic medium (OM), OM supplemented with BMP2 or collagen-coated MP constructs in OM exhibited bone-like extracellular matrix mineralization. Use of bio-inspired porosity for the 3D architecture of additively manufactured Ti-6Al-4V enhanced osteogenic differentiation of hMSCs beyond surface roughness alone. This study suggests that a 3D architecture may enhance the osseointegration of orthopedic and dental implants in vivo.


Assuntos
Calcificação Fisiológica/fisiologia , Implantes Dentários , Células-Tronco Mesenquimais/citologia , Osseointegração/fisiologia , Osteogênese/fisiologia , Diferenciação Celular/fisiologia , Humanos , Porosidade , Impressão Tridimensional
7.
Tissue Eng Part A ; 19(11-12): 1451-64, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23350662

RESUMO

Recent endeavors to use stem cells as trophic factor production sources have the potential to translate into viable therapies for damaged or diseased musculoskeletal tissues. Adipose stem cells (ASCs) can be differentiated into chondrocytes using the chondrogenic medium (CM), but it is unknown if this approach can optimize ASC growth factor secretion for cartilage regeneration by increasing the chondrogenic factor production, while decreasing angiogenic and hypertrophic factor production. The objective of this study was to determine the effects the CM and its components have on growth factor production from ASCs to promote cartilage regeneration. ASCs isolated from male Sprague-Dawley rats and cultured in monolayer or alginate microbeads were treated with either the growth medium (GM) or the CM for 5 days. In subsequent studies, ASC monolayers were treated with either the GM supplemented with different combinations of 50 µg/mL ascorbic acid-2-phosphate (AA2P), 100 nM dexamethasone (Dex), 10 ng/mL transforming growth factor (TGF)-ß1, and 100 ng/mL bone morphogenetic protein (BMP)-6 or with the CM excluding different combinations of AA2P, Dex, TGF-ß1, and BMP-6. mRNA levels and growth factor production were quantified at 8 and 24 h after the last media change, respectively. The CM increased chondrogenic factor secretion (TGF-ß2, TGF-ß3, and insulin-like growth factor [IGF]-I) and decreased angiogenic factor production (the vascular endothelial growth factor [VEGF]-A, the fibroblast growth factor [FGF]-2). Microencapsulation in the GM increased production of the chondrogenic (IGF-I, TGF-ß2) and angiogenic (VEGF-A) factors. AA2P increased secretion of chondrogenic factors (IGF-I, TGF-ß2), and decreased angiogenic factor (VEGF-A) secretion, in addition to decreasing mRNA levels for factors associated with chondrocyte hypertrophy (FGF-18). Dex increased mRNA levels for hypertrophic factors (BMP-2, FGF-18) and decreased angiogenic factor secretion (VEGF-A). TGF-ß1 increased angiogenic factor production (FGF-2, VEGF-A) and decreased chondrogenic factor mRNA levels (IGF-I, PTHrP). BMP-6 increased hypertrophic mRNA levels (FGF-18) and chondrogenic factor production (TGF-ß2). When ASC microbeads preconditioned with the CM were implanted in a focal cartilage defect and immobilized within an RGD-conjugated hydrogel, tissue infiltration from the edges of the defect and perichondrium was observed. These results show that differentiation media components have distinct effects on ASC's production of angiogenic, chondrogenic, and hypertrophic factors and that AA2P may be the most beneficial CM component for preconditioning ASCs to stimulate cartilage regeneration.


Assuntos
Tecido Adiposo/citologia , Cartilagem/patologia , Diferenciação Celular/efeitos dos fármacos , Condrócitos/patologia , Meios de Cultura/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Regeneração/efeitos dos fármacos , Células-Tronco/metabolismo , Animais , Ácido Ascórbico/análogos & derivados , Ácido Ascórbico/farmacologia , Proteína Morfogenética Óssea 6/farmacologia , Cartilagem/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Condrogênese/efeitos dos fármacos , Dexametasona/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Masculino , Microesferas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Fator de Crescimento Transformador beta1/farmacologia
8.
J Cell Biochem ; 113(10): 3236-45, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22628200

RESUMO

Large doses of bone morphogenetic protein 2 (BMP2) are used clinically to induce bone formation in challenging bone defects. However, complications after treatment include swelling, ectopic bone formation, and adjacent bone resorption. While BMP2 can be effective, it is important to characterize the mechanism of the deleterious effects to optimize its use. The aim of this study was to determine the effect of BMP2 on apoptosis in osteoblast lineage cells and to determine the role of the BMP inhibitor Noggin in this process. Human mesenchymal stem cells (MSCs), immature osteoblast-like MG63 cells, and mature normal human osteoblasts (NHOst) were treated with BMP2. A model system of increased endogenous BMP signaling was created by silencing Noggin (shNOG-MG63). Finally, the BMP pathway regulating apoptosis in NHOst was examined using BMP signaling inhibitors (5Z-7-oxozeaenol, dorsomorphin, H-8). Apoptosis was characterized by caspase-3, BAX/BCL2, p53, and DNA fragmentation. BMP2 induced apoptosis in a cell-type dependent manner. While the effect was minor in MSCs, MG63 cells had modest increases and NHOst cells had robust increases apoptosis after BMP2 treatment. Apoptosis was significantly higher in shNOG-MG63 than MG63 cells. 5Z-7-oxozeaenol and dorsomorphin eliminated the BMP2-induced increase in DNA fragmentation in NHOst, suggesting roles for TAB/TAK1 and Smad signaling. These results indicate that the apoptotic effect of BMP2 is dependent on cell maturation state, inducing apoptosis in committed osteoblasts through Smad and TAB/TAK1 signaling, and is regulated by Noggin. Dose and delivery must be optimized in therapeutic applications of BMP2 to minimize complications.


Assuntos
Apoptose , Proteína Morfogenética Óssea 2/farmacologia , Proteínas de Transporte/metabolismo , Osteoblastos/efeitos dos fármacos , Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Proteínas de Transporte/genética , Caspase 3/genética , Caspase 3/metabolismo , Fragmentação do DNA , Ativação Enzimática , Humanos , Marcação In Situ das Extremidades Cortadas , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Pirazóis/farmacologia , Pirimidinas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/farmacologia , Transdução de Sinais , Zearalenona/análogos & derivados , Zearalenona/farmacologia , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
9.
Biomaterials ; 23(8): 1855-63, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11950056

RESUMO

There is increasing evidence that wear debris particles present in periprosthetic tissues have direct effects on osteoblasts. The nature of the cell response varies with the chemistry of the particle and the number of particles. Most studies have used Ti, Ti-6Al-4V, and ultrahigh molecular weight polyethylene (UHMWPE) particles since these materials are most frequently used in implants and as a result, these particles predominate in peri-prosthetic tissues. Ceramics have also been used successfully as load-bearing surfaces in implants for years, although it is unknown how wear debris from these surfaces may contribute to aseptic bone loss. Further, particles resulting from polymethylmethacrylate (PMMA) cements used for fixation may also be involved in aseptic loosening of implants, but how these particles may affect bone formation is unknown. In the present study, we examined whether aluminum oxide (Al2O3), zirconium oxide (ZrO2), and PMMA particles exert effects on osteoblast proliferation, phenotypic expression, and local factor production, and if so, whether the effects were specific to the particle type. ZrO2 particles were produced in a custom-made axial mixer in which ZrO2 containers were filled with ZrO2 bars and 95% ethanol and then rotated continuously at room temperature. PMMA particles were prepared in a ZrO2 roller mill. Al2O3 was produced and provided by Aesculap AG. Particles were endotoxin-free with equivalent circle diameters <3 microm; Al2O3 particles were significantly smaller than ZrO2 or PMMA particles. Particle suspensions were added to confluent cultures of MG63 osteoblast-like cells after diluting them 1:100, 1:10, and 1:1 with culture medium. Cells were incubated with the particles for 24 h. Transmission electron microscopy showed that MG63 cells phagocytosed Al2O3 particles and exhibited ultrastructural changes consistent with cytotoxicity. This was supported by biochemical changes as well. Proliferation, alkaline phosphatase activity, and TGF-beta1 levels were decreased. ZrO2 and PMMA particles increased proliferation and alkaline phosphatase specific activity. The effect of ZrO2 on alkaline phosphatase was targeted to matrix vesicles, the effect of PMMA was greater on the cells. All particles increased prostaglandin E2 production. These results show that Al2O3, ZrO2, and PMMA particles elicit direct effects on osteoblasts and that cell response depends on the particle type. None of the particles tested had the same effect as noted previously for UHMWPE: increased proliferation and decreased alkaline phosphatase. These results may indicate that the response of peri-prosthetic tissues to wear particles may be modulated by the relative contributions of the various particle types present.


Assuntos
Cimentos Ósseos/farmacologia , Cerâmica/farmacologia , Osteoblastos/metabolismo , Polimetil Metacrilato/farmacologia , Óxido de Zinco/farmacologia , Fosfatase Alcalina/metabolismo , Óxido de Alumínio/farmacologia , Materiais Biocompatíveis/farmacologia , Divisão Celular , Dinoprostona/metabolismo , Ensaio de Imunoadsorção Enzimática , Humanos , Microscopia Eletrônica , Osteoblastos/efeitos dos fármacos , Fagocitose , Fenótipo , Próteses e Implantes , Fatores de Tempo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1 , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA