Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 693: 133626, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31377363

RESUMO

Large amounts of oil containing mucous-like marine snow formed in surface waters adjacent to the Deepwater Horizon spill that was implicated in oil delivery to the seafloor. However, whether chemical dispersants that were used increased or decreased the oil incorporation and sedimentation efficiency, and how exopolymeric substances (EPS) are involved in this process remains unresolved. To investigate the microbial responses to oil and dispersants in different oceanic settings, indicated by EPS production, petro- and non-petro carbon sedimentation, four mesocosm (M) experiments were conducted: 1) nearshore seawater with a natural microbial consortia (M2); 2) offshore seawater with f/20 nutrients (M3); 3) coastal seawater with f/20 nutrients (M4); 4) nearshore seawater with a natural microbial consortia for a longer duration (M5). Four treatments were conducted in M2, M3 and M4 whereas only three in M5: 1) a water accommodated fraction of oil (WAF), 2) a chemically-enhanced WAF prepared with Corexit (CEWAF, not in M5), 3) a 10-fold diluted CEWAF (DCEWAF); and 4) controls. Overall, oil and dispersants input, nutrient and microbial biomass addition enhanced EPS production. Dispersant addition tended to induce the production of EPS with higher protein/carbohydrate (P/C) ratios, irrespective of oceanic regions. EPS produced in M4 was generally more hydrophobic than that produced in M3. The P/C ratio of EPS in both the aggregate and the colloidal fraction was a key factor that regulated oil contribution to sinking aggregates, based on the close correlation with %petro-carbon in these fractions. In the short term (4-5 days), both the petro and non-petro carbon sedimentation efficiencies showed decreasing trends when oil/dispersants were present. In comparison, in the longer-term (16 days), petro-carbon sedimentation efficiency was less influenced by dispersants, possibly due to biological and physicochemical changes of the components of the oil-EPS-mineral phase system, which cooperatively controlled the sinking velocities of the aggregates.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Sedimentos Geológicos/microbiologia , Petróleo/análise , Poluentes Químicos da Água/análise , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos/química , Poluição por Petróleo/análise , Água do Mar/química , Tensoativos/química
2.
Mar Pollut Bull ; 130: 170-178, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29866543

RESUMO

Phytoplankton alter their macromolecule composition in response to changing environmental conditions. Often these changes are consistent and can be used as indicators to predict their exposure to a given condition. FTIR-spectroscopy is a powerful tool that provides rapid snapshot of microbial samples. We used FTIR to develop signature macromolecular composition profiles of three cultures: Skeletonema costatum, Emiliania huxleyi, and Navicula sp., exposed to chemically enhanced water accommodated oil fraction (CEWAF) in artificial seawater and control. Using a multivariate model created with a Partial Least Square Discriminant Analysis of the FTIR-spectra, classification of CEWAF exposed versus control samples was possible. This model was validated using aggregate samples from a mesocosm study. Analysis of spectra and PCA-loadings plot showed changes to carbohydrates and proteins in response to CEWAF. Overall we developed a robust multivariate model that can be used to identify if a phytoplankton sample has been exposed to oil with dispersant.


Assuntos
Monitoramento Ambiental/métodos , Petróleo/toxicidade , Fitoplâncton/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Carboidratos , Diatomáceas/química , Diatomáceas/efeitos dos fármacos , Análise Discriminante , Haptófitas/química , Haptófitas/efeitos dos fármacos , Modelos Teóricos , Petróleo/análise , Poluição por Petróleo/efeitos adversos , Poluição por Petróleo/análise , Fitoplâncton/química , Análise de Componente Principal , Água do Mar , Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA