Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Phytopathology ; 112(5): 1016-1028, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34844416

RESUMO

Cercospora leaf spot (CLS) is a globally important disease of sugar beet (Beta vulgaris) caused by the fungus Cercospora beticola. Long-distance movement of C. beticola has been indirectly evidenced in recent population genetic studies, suggesting potential dispersal via seed. Commercial sugar beet "seed" consists of the reproductive fruit (true seed surrounded by maternal pericarp tissue) coated in artificial pellet material. In this study, we confirmed the presence of viable C. beticola in sugar beet fruit for 10 of 37 tested seed lots. All isolates harbored the G143A mutation associated with quinone outside inhibitor resistance, and 32 of 38 isolates had reduced demethylation inhibitor sensitivity (EC50 > 1 µg/ml). Planting of commercial sugar beet seed demonstrated the ability of seedborne inoculum to initiate CLS in sugar beet. C. beticola DNA was detected in DNA isolated from xylem sap, suggesting the vascular system is used to systemically colonize the host. We established nuclear ribosomal internal transcribed spacer region amplicon sequencing using the MinION platform to detect fungi in sugar beet fruit. Fungal sequences from 19 different genera were identified from 11 different sugar beet seed lots, but Fusarium, Alternaria, and Cercospora were consistently the three most dominant taxa, comprising an average of 93% relative read abundance over 11 seed lots. We also present evidence that C. beticola resides in the pericarp of sugar beet fruit rather than the true seed. The presence of seedborne inoculum should be considered when implementing integrated disease management strategies for CLS of sugar beet in the future.


Assuntos
Beta vulgaris , Cercospora , Beta vulgaris/microbiologia , Frutas , Doenças das Plantas/microbiologia , Açúcares , Verduras
2.
Mol Plant Pathol ; 22(3): 301-316, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33369055

RESUMO

Cercospora beticola is a hemibiotrophic fungus that causes cercospora leaf spot disease of sugar beet (Beta vulgaris). After an initial symptomless biotrophic phase of colonization, necrotic lesions appear on host leaves as the fungus switches to a necrotrophic lifestyle. The phytotoxic secondary metabolite cercosporin has been shown to facilitate fungal virulence for several Cercospora spp. However, because cercosporin production and subsequent cercosporin-initiated formation of reactive oxygen species is light-dependent, cell death evocation by this toxin is only fully ensured during a period of light. Here, we report the discovery of the effector protein CbNip1 secreted by C. beticola that causes enhanced necrosis in the absence of light and, therefore, may complement light-dependent necrosis formation by cercosporin. Infiltration of CbNip1 protein into sugar beet leaves revealed that darkness is essential for full CbNip1-triggered necrosis, as light exposure delayed CbNip1-triggered host cell death. Gene expression analysis during host infection shows that CbNip1 expression is correlated with symptom development in planta. Targeted gene replacement of CbNip1 leads to a significant reduction in virulence, indicating the importance of CbNip1 during colonization. Analysis of 89 C. beticola genomes revealed that CbNip1 resides in a region that recently underwent a selective sweep, suggesting selection pressure exists to maintain a beneficial variant of the gene. Taken together, CbNip1 is a crucial effector during the C. beticola-sugar beet disease process.


Assuntos
Beta vulgaris/microbiologia , Cercospora/genética , Proteínas Fúngicas/metabolismo , Genoma Fúngico/genética , Perileno/análogos & derivados , Doenças das Plantas/microbiologia , Cercospora/crescimento & desenvolvimento , Cercospora/patogenicidade , Proteínas Fúngicas/genética , Interações Hospedeiro-Patógeno , Necrose , Perileno/metabolismo , Fenótipo , Filogenia , Folhas de Planta/microbiologia , Virulência , Fatores de Virulência
3.
Mol Plant Pathol ; 21(8): 1020-1041, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32681599

RESUMO

Cercospora leaf spot, caused by the fungal pathogen Cercospora beticola, is the most destructive foliar disease of sugar beet worldwide. This review discusses C. beticola genetics, genomics, and biology and summarizes our current understanding of the molecular interactions that occur between C. beticola and its sugar beet host. We highlight the known virulence arsenal of C. beticola as well as its ability to overcome currently used disease management strategies. Finally, we discuss future prospects for the study and management of C. beticola infections in the context of newly employed molecular tools to uncover additional information regarding the biology of this pathogen. TAXONOMY: Cercospora beticola Sacc.; Kingdom Fungi, Phylum Ascomycota, Class Dothideomycetes, Order Capnodiales, Family Mycosphaerellaceae, Genus Cercospora. HOST RANGE: Well-known pathogen of sugar beet (Beta vulgaris subsp. vulgaris) and most species of the Beta genus. Reported as pathogenic on other members of the Chenopodiaceae (e.g., lamb's quarters, spinach) as well as members of the Acanthaceae (e.g., bear's breeches), Apiaceae (e.g., Apium), Asteraceae (e.g., chrysanthemum, lettuce, safflower), Brassicaceae (e.g., wild mustard), Malvaceae (e.g., Malva), Plumbaginaceae (e.g., Limonium), and Polygonaceae (e.g., broad-leaved dock) families. DISEASE SYMPTOMS: Leaves infected with C. beticola exhibit circular lesions that are coloured tan to grey in the centre and are often delimited by tan-brown to reddish-purple rings. As disease progresses, spots can coalesce to form larger necrotic areas, causing severely infected leaves to wither and die. At the centre of these spots are black spore-bearing structures (pseudostromata). Older leaves often show symptoms first and younger leaves become infected as the disease progresses. MANAGEMENT: Application of a mixture of fungicides with different modes of action is currently performed although elevated resistance has been documented in most employed fungicide classes. Breeding for high-yielding cultivars with improved host resistance is an ongoing effort and prudent cultural practices, such as crop rotation, weed host management, and cultivation to reduce infested residue levels, are widely used to manage disease. USEFUL WEBSITE: https://www.ncbi.nlm.nih.gov/genome/11237?genome_assembly_id=352037.


Assuntos
Beta vulgaris/microbiologia , Cercospora/patogenicidade , Doenças das Plantas/microbiologia , Acanthaceae/microbiologia , Apiaceae/microbiologia , Asteraceae/microbiologia , Brassicaceae/microbiologia , Cercospora/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Malvaceae/microbiologia , Plumbaginaceae/microbiologia , Polygonaceae/microbiologia
4.
Viruses ; 12(6)2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32531939

RESUMO

"Rhizomania" of sugar beet is a soilborne disease complex comprised of beet necrotic yellow vein virus (BNYVV) and its plasmodiophorid vector, Polymyxa betae. Although BNYVV is considered the causal agent of rhizomania, additional viruses frequently accompany BNYVV in diseased roots. In an effort to better understand the virus cohort present in sugar beet roots exhibiting rhizomania disease symptoms, five independent RNA samples prepared from diseased beet seedlings reared in a greenhouse or from field-grown adult sugar beet plants and enriched for virus particles were subjected to RNAseq. In all but a healthy control sample, the technique was successful at identifying BNYVV and provided sequence reads of sufficient quantity and overlap to assemble > 98% of the published genome of the virus. Utilizing the derived consensus sequence of BNYVV, infectious RNA was produced from cDNA clones of RNAs 1 and 2. The approach also enabled the detection of beet soilborne mosaic virus (BSBMV), beet soilborne virus (BSBV), beet black scorch virus (BBSV), and beet virus Q (BVQ), with near-complete genome assembly afforded to BSBMV and BBSV. In one field sample, a novel virus sequence of 3682 nt was assembled with significant sequence similarity and open reading frame (ORF) organization to members within the subgenus Alphanecrovirus (genus Necrovirus; family Tombusviridae). Construction of a DNA clone based on this sequence led to the production of the novel RNA genome in vitro that was capable of inducing local lesion formation on leaves of Chenopodium quinoa. Additionally, two previously unreported satellite viruses were revealed in the study; one possessing weak similarity to satellite maize white line mosaic virus and a second possessing moderate similarity to satellite tobacco necrosis virus C. Taken together, the approach provides an efficient pipeline to characterize variation in the BNYVV genome and to document the presence of other viruses potentially associated with disease severity or the ability to overcome resistance genes used for sugar beet rhizomania disease management.


Assuntos
Genoma Viral , Doenças das Plantas/parasitologia , Doenças das Plantas/virologia , Vírus de Plantas/genética , Plasmodioforídeos/virologia , Vírus Satélites/genética , Beta vulgaris/parasitologia , Beta vulgaris/virologia , Filogenia , Raízes de Plantas/parasitologia , Raízes de Plantas/virologia , Vírus de Plantas/classificação , Vírus de Plantas/isolamento & purificação , Vírus Satélites/classificação , Vírus Satélites/isolamento & purificação , Análise de Sequência de RNA
5.
Plant Dis ; 104(6): 1654-1661, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32282278

RESUMO

Cercospora leaf spot (CLS), caused by the fungal pathogen Cercospora beticola, is the most destructive disease of sugar beet worldwide. Although growing CLS-tolerant varieties is helpful, disease management currently requires timely application of fungicides. However, overreliance on fungicides has led to the emergence of fungicide resistance in many C. beticola populations, resulting in multiple epidemics in recent years. Therefore, this study focused on developing a fungicide resistance detection "toolbox" for early detection of C. beticola in sugar beet leaves and mutations associated with different fungicides in the pathogen population. A loop-mediated isothermal amplification (LAMP) method was developed for rapid detection of C. beticola in infected sugar beet leaves. The LAMP primers specific to C. beticola (Cb-LAMP) assay was able to detect C. beticola in inoculated sugar beet leaves as early as 1 day postinoculation. A quinone outside inhibitor (QoI)-LAMP assay was also developed to detect the G143A mutation in cytochrome b associated with QoI resistance in C. beticola. The assay detected the mutation in C. beticola both in vitro and in planta with 100% accuracy. We also developed a probe-based quantitative PCR (qPCR) assay for detecting an E198A mutation in ß-tubulin associated with benzimidazole resistance and a probe-based qPCR assay for detection of mutations in cytochrome P450-dependent sterol 14α-demethylase (Cyp51) associated with resistance to sterol demethylation inhibitor fungicides. The primers and probes used in the assay were highly efficient and precise in differentiating the corresponding fungicide-resistant mutants from sensitive wild-type isolates.


Assuntos
Ascomicetos , Beta vulgaris , Fungicidas Industriais , Mutação , Açúcares
6.
Phytopathology ; 109(7): 1280-1292, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30785376

RESUMO

Cercospora leaf spot, caused by Cercospora beticola, is a highly destructive disease of Beta vulgaris subsp. vulgaris worldwide. C. beticola populations are usually characterized by high genetic diversity, but little is known of the relationships among populations from different production regions around the world. This information would be informative of population origin and potential pathways for pathogen movement. For the current study, the genetic diversity, differentiation, and relationships among 948 C. beticola isolates in 28 populations across eight geographic regions were investigated using 12 microsatellite markers. Genotypic diversity, as measured by Simpson's complement index, ranged from 0.18 to 1.00, while pairwise index of differentiation values ranged from 0.02 to 0.42, with the greatest differentiation detected between two New York populations. In these populations, evidence for recent expansion was detected. Assessment of population structure identified two major clusters: the first associated with New York, and the second with Canada, Chile, Eurasia, Hawaii, Michigan, North Dakota, and one population from New York. Inferences of gene flow among these regions suggested that the source for one cluster likely is Eurasia, whereas the source for the other cluster is not known. These results suggest a shared origin of C. beticola populations across regions, except for part of New York, where population divergence has occurred. These findings support the hypothesis that dispersal of C. beticola occurs over long distances.


Assuntos
Beta vulgaris , Doenças das Plantas/microbiologia , Beta vulgaris/microbiologia , Canadá , Chile , Variação Genética , Havaí , Michigan , New York , North Dakota
7.
Fungal Biol ; 122(4): 264-282, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29551200

RESUMO

The taxonomy and evolutionary species boundaries in a global collection of Cercospora isolates from Beta vulgaris was investigated based on sequences of six loci. Species boundaries were assessed using concatenated multi-locus phylogenies, Generalized Mixed Yule Coalescent (GMYC), Poisson Tree Processes (PTP), and Bayes factor delimitation (BFD) framework. Cercospora beticola was confirmed as the primary cause of Cercospora leaf spot (CLS) on B. vulgaris. Cercospora apii, C. cf. flagellaris, Cercospora sp. G, and C. zebrina were also identified in association with CLS on B. vulgaris. Cercospora apii and C. cf. flagellaris were pathogenic to table beet but Cercospora sp. G and C. zebrina did not cause disease. Genealogical concordance phylogenetic species recognition, GMYC and PTP methods failed to differentiate C. apii and C. beticola as separate species. On the other hand, multi-species coalescent analysis based on BFD supported separation of C. apii and C. beticola into distinct species; and provided evidence of evolutionary independent lineages within C. beticola. Extensive intra- and intergenic recombination, incomplete lineage sorting and dominance of clonal reproduction complicate evolutionary species recognition in the genus Cercospora. The results warrant morphological and phylogenetic studies to disentangle cryptic speciation within C. beticola.


Assuntos
Ascomicetos/classificação , Ascomicetos/genética , Beta vulgaris/microbiologia , Variação Genética , Filogenia , Doenças das Plantas/microbiologia , Ascomicetos/isolamento & purificação , Ascomicetos/patogenicidade , Biologia Computacional , Loci Gênicos , Análise de Sequência de DNA
8.
PLoS One ; 12(10): e0186488, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29065114

RESUMO

Genotyping-by-sequencing (GBS) was conducted on 333 Cercospora isolates collected from Beta vulgaris (sugar beet, table beet and swiss chard) in the USA and Europe. Cercospora beticola was confirmed as the species predominantly isolated from leaves with Cercospora leaf spot (CLS) symptoms. However, C. cf. flagellaris also was detected at a frequency of 3% in two table beet fields in New York. Resolution of the spatial structure and identification of clonal lineages in C. beticola populations using genome-wide single nucleotide polymorphisms (SNPs) obtained from GBS was compared to genotyping using microsatellites. Varying distance thresholds (bitwise distance = 0, 1.854599 × 10-4, and 1.298 × 10-3) were used for delineation of clonal lineages in C. beticola populations. Results supported previous reports of long distance dispersal of C. beticola through genotype flow. The GBS-SNP data set provided higher resolution in discriminating clonal lineages; however, genotype identification was impacted by filtering parameters and the distance threshold at which the multi-locus genotypes (MLGs) were contracted to multi-locus lineages. The type of marker or different filtering strategies did not impact estimates of population differentiation and structure. Results emphasize the importance of robust filtering strategies and designation of distance thresholds for delineating clonal lineages in population genomics analyses that depend on individual assignment and identification of clonal lineages. Detection of recurrent clonal lineages shared between the USA and Europe, even in the relaxed-filtered SNP data set and with a conservative distance threshold for contraction of MLGs, provided strong evidence for global genotype flow in C. beticola populations. The implications of intercontinental migration in C. beticola populations for CLS management are discussed.


Assuntos
Ascomicetos/genética , Genótipo , Beta vulgaris/microbiologia , Repetições de Microssatélites/genética , Polimorfismo de Nucleotídeo Único
9.
PLoS One ; 11(11): e0165690, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27812174

RESUMO

Genotyping-by-sequencing (GBS) was performed on 257 Phytophthora infestans isolates belonging to four clonal lineages to study within-lineage diversity. The four lineages used in the study were US-8 (n = 28), US-11 (n = 27), US-23 (n = 166), and US-24 (n = 36), with isolates originating from 23 of the United States and Ontario, Canada. The majority of isolates were collected between 2010 and 2014 (94%), with the remaining isolates collected from 1994 to 2009, and 2015. Between 3,774 and 5,070 single-nucleotide polymorphisms (SNPs) were identified within each lineage and were used to investigate relationships among individuals. K-means hierarchical clustering revealed three clusters within lineage US-23, with US-23 isolates clustering more by collection year than by geographic origin. K-means hierarchical clustering did not reveal significant clustering within the smaller US-8, US-11, and US-24 data sets. Neighbor-joining (NJ) trees were also constructed for each lineage. All four NJ trees revealed evidence for pathogen dispersal and overwintering within regions, as well as long-distance pathogen transport across regions. In the US-23 NJ tree, grouping by year was more prominent than grouping by region, which indicates the importance of long-distance pathogen transport as a source of initial late blight inoculum. Our results support previous studies that found significant genetic diversity within clonal lineages of P. infestans and show that GBS offers sufficiently high resolution to detect sub-structuring within clonal populations.


Assuntos
DNA de Protozoário/genética , Phytophthora infestans/genética , Phytophthora infestans/isolamento & purificação , Doenças das Plantas/parasitologia , Polimorfismo de Nucleotídeo Único/genética , Sequência de Bases , Canadá , Ligação Genética/genética , Genótipo , Geografia , Solanum lycopersicum/parasitologia , Análise de Sequência de DNA , Solanum tuberosum/parasitologia , Estados Unidos
10.
Fungal Biol ; 118(9-10): 764-75, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25209635

RESUMO

This study characterized a novel sugar beet (Beta vulgaris L.) pathogen from the Red River Valley in north central USA, which was formally named Fusarium secorum. Molecular phylogenetic analyses of three loci (translation elongation factor1α, calmodulin, mitochondrial small subunit) and phenotypic data strongly supported the inclusion of F. secorum in the Fusarium fujikuroi species complex (FFSC). Phylogenetic analyses identified F. secorum as a sister taxon of F. acutatum and a member of the African subclade of the FFSC. Fusarium secorum produced circinate hyphae sometimes bearing microconidia and abundant corkscrew-shaped hyphae in culture. To assess mycotoxin production potential, 45 typical secondary metabolites were tested in F. secorum rice cultures, but only beauvericin was produced in detectable amounts by each isolate. Results of pathogenicity experiments revealed that F. secorum isolates are able to induce half- and full-leaf yellowing foliar symptoms and vascular necrosis in roots and petioles of sugar beet. Inoculation with F. acutatum did not result in any disease symptoms. The sugar beet disease caused by F. secorum is named Fusarium yellowing decline. Since Fusarium yellowing decline incidence has been increasing in the Red River Valley, disease management options are discussed.


Assuntos
Beta vulgaris/microbiologia , Fusarium/classificação , Fusarium/isolamento & purificação , Doenças das Plantas/microbiologia , Calmodulina/genética , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , Fusarium/citologia , Fusarium/fisiologia , Hifas/citologia , Hifas/crescimento & desenvolvimento , Dados de Sequência Molecular , Micotoxinas/metabolismo , Fator 1 de Elongação de Peptídeos/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Homologia de Sequência , Estados Unidos
11.
Fungal Genet Biol ; 62: 43-54, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24216224

RESUMO

Dothideomycetes is one of the most ecologically diverse and economically important classes of fungi. Sexual reproduction in this group is governed by mating type (MAT) genes at the MAT1 locus. Self-sterile (heterothallic) species contain one of two genes at MAT1 (MAT1-1-1 or MAT1-2-1) and only isolates of opposite mating type are sexually compatible. In contrast, self-fertile (homothallic) species contain both MAT genes at MAT1. Knowledge of the reproductive capacities of plant pathogens are of particular interest because recombining populations tend to be more difficult to manage in agricultural settings. In this study, we sequenced MAT1 in the heterothallic Dothideomycete fungus Cercospora beticola to gain insight into the reproductive capabilities of this important plant pathogen. In addition to the expected MAT gene at MAT1, each isolate contained fragments of both MAT1-1-1 and MAT1-2-1 at ostensibly random loci across the genome. When MAT fragments from each locus were manually assembled, they reconstituted MAT1-1-1 and MAT1-2-1 exons with high identity, suggesting a retroposition event occurred in a homothallic ancestor in which both MAT genes were fused. The genome sequences of related taxa revealed that MAT gene fragment pattern of Cercospora zeae-maydis was analogous to C. beticola. In contrast, the genome of more distantly related Mycosphaerella graminicola did not contain MAT fragments. Although fragments occurred in syntenic regions of the C. beticola and C. zeae-maydis genomes, each MAT fragment was more closely related to the intact MAT gene of the same species. Taken together, these data suggest MAT genes fragmented after divergence of M. graminicola from the remaining taxa, and concerted evolution functioned to homogenize MAT fragments and MAT genes in each species.


Assuntos
Ascomicetos/genética , Beta vulgaris/microbiologia , Genes Fúngicos Tipo Acasalamento , Evolução Molecular , Éxons , Reprodução
12.
Fungal Biol ; 116(4): 511-21, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22483049

RESUMO

Cercospora leaf spot, caused by the hemibiotrophic fungal pathogen Cercospora beticola, is the most economically damaging foliar disease of sugarbeet worldwide. Although most C. beticola populations display characteristics reminiscent of sexual recombination, no teleomorph has been described. To assess whether populations in northern United States have characteristics consistent with sexual reproduction, 1024 isolates collected over a 3-y period were analyzed for frequency and distribution of mating type genes. After clone correction, an approximately equal distribution of mating types was found for each sampling year. Mating type frequency was also assessed in individual lesions. Lesions always consisted of isolates with a single mating type and microsatellite haplotype, but both mating types and up to five microsatellite haplotypes could be found on an individual leaf. The MAT1-1-1 and MAT1-2-1 genes were sequenced from 28 MAT1-1 and 28 MAT1-2 isolates, respectively. Three MAT1-1-1 nucleotide haplotypes were identified that encoded a single amino acid sequence. For MAT1-2-1, five nucleotide haplotypes were identified that encoded four protein variants. MAT1-1-1 and MAT1-2-1 gene expression analyses were conducted on plants inoculated with either or both mating types. MAT1-1-1 expression remained low, but MAT1-2-1 spiked during late stages of colonization. A segment of the MAT1-2-1 coding sequence was also found in MAT1-1 isolates. Taken together, these results suggest that C. beticola has the potential for sexual reproduction.


Assuntos
Ascomicetos/crescimento & desenvolvimento , Ascomicetos/genética , Genes Fúngicos Tipo Acasalamento , Recombinação Genética , Ascomicetos/classificação , Ascomicetos/isolamento & purificação , Beta vulgaris/microbiologia , DNA Fúngico/química , DNA Fúngico/genética , Haplótipos , Repetições de Microssatélites , Dados de Sequência Molecular , Doenças das Plantas/microbiologia , Polimorfismo Genético , Análise de Sequência de DNA , Estados Unidos
13.
Phytopathology ; 102(3): 298-305, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22085297

RESUMO

The hemibiotrophic fungus Cercospora beticola causes leaf spot of sugar beet. Leaf spot control measures include the application of sterol demethylation inhibitor (DMI) fungicides. However, reduced sensitivity to DMIs has been reported recently in the Red River Valley sugar beet-growing region of North Dakota and Minnesota. Here, we report the cloning and molecular characterization of CbCyp51, which encodes the DMI target enzyme sterol P450 14α-demethylase in C. beticola. CbCyp51 is a 1,632-bp intron-free gene with obvious homology to other fungal Cyp51 genes and is present as a single copy in the C. beticola genome. Five nucleotide haplotypes were identified which encoded three amino acid sequences. Protein variant 1 composed 79% of the sequenced isolates, followed by protein variant 2 that composed 18% of the sequences and a single isolate representative of protein variant 3. Because resistance to DMIs can be related to polymorphism in promoter or coding sequences, sequence diversity was assessed by sequencing >2,440 nucleotides encompassing CbCyp51 coding and flanking regions from isolates with varying EC(50) values (effective concentration to reduce growth by 50%) to DMI fungicides. However, no mutations or haplotypes were associated with DMI resistance or sensitivity. No evidence for alternative splicing or differential methylation of CbCyp51 was found that might explain reduced sensitivity to DMIs. However, CbCyp51 was overexpressed in isolates with high EC(50) values compared with isolates with low EC(50) values. After exposure to tetraconazole, isolates with high EC(50) values responded with further induction of CbCyp51, with a positive correlation of CbCyp51 expression and tetraconazole concentration up to 2.5 µg ml(-1).


Assuntos
Ascomicetos/enzimologia , Beta vulgaris/microbiologia , Farmacorresistência Fúngica/genética , Esterol 14-Desmetilase/genética , Ascomicetos/efeitos dos fármacos , Ascomicetos/genética , Sequência de Bases , Clorobenzenos/farmacologia , Clonagem Molecular , DNA Complementar/genética , DNA Fúngico/química , DNA Fúngico/genética , Dioxolanos/farmacologia , Dosagem de Genes/genética , Regulação Fúngica da Expressão Gênica , Genes Fúngicos/genética , Haplótipos , Dados de Sequência Molecular , Mutação , Folhas de Planta/microbiologia , Análise de Sequência de DNA , Esterol 14-Desmetilase/isolamento & purificação , Triazóis/farmacologia
14.
Phytopathology ; 100(3): 290-6, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20128703

RESUMO

Fusarium graminearum, a known producer of trichothecene mycotoxins in cereal hosts, has been recently documented as a cause of dry rot of potato tubers in the United States. Due to the uncertainty of trichothecene production in these tubers, a study was conducted to determine the accumulation and diffusion of trichothecenes in potato tubers affected with dry rot caused by F. graminearum. Potato tubers of cv. Russet Burbank were inoculated with 14 F. graminearum isolates from potato, sugar beet, and wheat and incubated at 10 to 12 degrees C for 5 weeks to determine accumulation of trichothecenes in potato tubers during storage. Twelve of the isolates were classified as deoxynivalenol (DON) genotype and two isolates were as nivalenol (NIV) genotype. Trichothecenes were detected only in rotted tissue. DON was detected in all F. graminearum DON genotype isolates up to 39.68 microg/ml in rotted potato tissue. Similarly, both NIV genotype isolates accumulated NIV in rotted potato tissue up to 18.28 microg/ml. Interestingly, isolates classified as genotype DON accumulated both DON and NIV in the dry rot lesion. Potato tubers were then inoculated with two isolates of F. graminearum chemotype DON and incubated up to 7 weeks at 10 to 12 degrees C and assayed for DON diffusion. F. graminearum was recovered from >53% of the isolations from inoculated tubers at 3 cm distal to the rotted tissue after 7 weeks of incubation but DON was not detected in the surrounding tissue. Based in this data, the accumulation of trichothecenes in the asymptomatic tissue surrounding dry rot lesions caused by F. graminearum is minimal in cv. Russet Burbank potato tubers stored for 7 weeks at customary processing storage temperatures.


Assuntos
Fusarium/metabolismo , Micotoxinas/metabolismo , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Tricotecenos/metabolismo , Fusarium/genética , Genótipo , Micotoxinas/química , Tricotecenos/química
15.
J Microbiol Methods ; 78(1): 59-65, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19409423

RESUMO

The new Liberibacter species, 'Candidatus Liberibacter solanacearum' (Lso) recently associated with potato/tomato psyllid-transmitted diseases in tomato and capsicum in New Zealand, was found to be consistently associated with a newly emerging potato zebra chip (ZC) disease in Texas and other southwestern states in the USA. A species-specific primer LsoF was developed for both quantitative real-time PCR (qPCR) and conventional PCR (cPCR) to detect and quantify Lso in infected samples. In multiplex qPCR, a plant cytochrome oxidase (COX)-based probe-primer set was used as a positive internal control for host plants, which could be used to reliably access the DNA extraction quality and to normalize qPCR data for accurate quantification of the bacterial populations in environment samples. Neither the qPCR nor the cPCR using the primer and/or probe sets with LsoF reacted with other Liberibacter species infecting citrus or other potato pathogens. The low detection limit of the multiplex qPCR was about 20 copies of the target 16S rDNA templates per reaction for field samples. Lso was readily detected and quantified in various tissues of ZC-affected potato plants collected from fields in Texas. A thorough but uneven colonization of Lso was revealed in various tissues of potato plants. The highest Lso populations were about 3x10(8) genomes/g tissue in the root, which were 3-order higher than those in the above-ground tissues of potato plants. The Lso bacterial populations were normally distributed across the ZC-affected potato plants collected from fields in Texas, with 60% of ZC-affected potato plants harboring an average Lso population from 10(5) to 10(6) genomes/g tissue, 4% of plants hosting above 10(7) Lso genomes/g tissue, and 8% of plants holding below 10(3) Lso genomes/g tissue. The rapid, sensitive, specific and reliable multiplex qPCR showed its potential to become a powerful tool for early detection and quantification of the new Liberibacter species associated with potato ZC, and will be very useful for the potato quarantine programs and seed potato certification programs to ensure the availability of clean seed potato stocks and also for epidemiological studies on the disease.


Assuntos
Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase/métodos , Rhizobiaceae/isolamento & purificação , Solanum tuberosum/microbiologia , DNA Bacteriano/genética , DNA Ribossômico/genética , Dados de Sequência Molecular , Plantas/microbiologia , RNA Ribossômico 16S/genética , Rhizobiaceae/classificação , Rhizobiaceae/genética
16.
Appl Environ Microbiol ; 74(21): 6513-20, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18791024

RESUMO

Gibberella zeae is one of the most devastating pathogens of barley and wheat in the United States. The fungus also infects noncereal crops, such as potatoes and sugar beets, and the genetic relationships among barley, wheat, potato, and sugar beet isolates indicate high levels of similarity. However, little is known about the toxigenic potential of G. zeae isolates from potatoes and sugar beets. A total of 336 isolates of G. zeae from barley, wheat, potatoes, and sugar beets were collected and analyzed by TRI (trichothecene biosynthesis gene)-based PCR assays. To verify the TRI-based PCR detection of genetic markers by chemical analysis, 45 representative isolates were grown in rice cultures for 28 days and 15 trichothecenes and 2 zearalenone (ZEA) analogs were quantified using gas chromatography-mass spectrometry. TRI-based PCR assays revealed that all isolates had the deoxynivalenol (DON) marker. The frequencies of isolates with the 15-acetyl-deoxynivalenol (15-ADON) marker were higher than those of isolates with the 3-acetyl-deoxynivalenol (3-ADON) marker among isolates from all four crops. Fusarium head blight (FHB)-resistant wheat cultivars had little or no influence on the diversity of isolates associated with the 3-ADON and 15-ADON markers. However, the frequency of isolates with the 3-ADON marker among isolates from the Langdon, ND, sampling site was higher than those among isolates from the Carrington and Minot, ND, sites. In chemical analyses, DON, 3-ADON, 15-ADON, b-ZEA, and ZEA were detected. All isolates produced DON (1 to 782 microg/g) and ZEA (1 to 623 microg/g). These findings may be useful for monitoring mycotoxin contamination and for formulating FHB management strategies for these crops.


Assuntos
Beta vulgaris/microbiologia , Gibberella/química , Gibberella/genética , Hordeum/microbiologia , Micotoxinas/biossíntese , Solanum tuberosum/microbiologia , Triticum/microbiologia , Cromatografia Gasosa-Espectrometria de Massas , Gibberella/isolamento & purificação , Micotoxinas/análise , Micotoxinas/genética , Reação em Cadeia da Polimerase/métodos , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA