Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Acta Biomater ; 148: 206-217, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35697198

RESUMO

Very limited treatment options are available to fight hepatocellular carcinoma (HCC), a serious global health concern with high morbidity and mortality. The integration of multiple therapies into one nanoplatform to exert synergistic therapeutic effects offers advantages over monotherapies. Here, we describe the construction of the nanoplatform Sor@GR-COF-366 for synergistic chemotherapy and photodynamic therapy (PDT) for HCC using a porphyrin-based covalent organic framework (COF-366) coated with N-acetyl-galactosamine (GalNAc) and rhodamine B (RhB), and loaded with the first-line agent, Sorafenib (Sor). The nanoplatform is targeted towards ASGPR-overexpressed HCC cells and liver tissues by GalNAc and observed by real-time imaging of RhB in vitro and in vivo. The nanoplatform Sor@GR-COF-366 exerts an enhanced synergistic tumor suppression effect in a subcutaneous HCC mouse model with a tumor inhibition rate (TGI) of 97% while significantly prolonging survival at very low toxicity. The potent synergistic therapeutic outcome is confirmed in an orthotopic mouse model of HCC with the TGI of 98% with a minimally invasive interventional PDT (IPDT). Sor@GR-COF-366 is a promising candidate to be combined with chemo-IPDT for the treatment of HCC. STATEMENT OF SIGNIFICANCE: This work describes the construction of covalent-organic frameworks (COFs) modified with glyco-moieties to serve as hepato-targeted multitherapy delivery systems. They combine minimally invasive interventional photodynamic therapy (IPDT) triggered synergism with chemotherapy treatment for hepatocellular carcinoma (HCC). With the aid of minimally invasive intervention, PDT can elicit potent anti-cancer activity for deep solid tumors. This platform shows strong therapeutic outcomes in both subcutaneous and orthotopic mouse models, which can significantly prolong survival. This work showed an effective combination of a biomedical nano-formulation with the clinical operational means in cancer treatment, which is greatly promising in clinical translation.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Estruturas Metalorgânicas , Fotoquimioterapia , Porfirinas , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Estruturas Metalorgânicas/farmacologia , Camundongos , Fotoquimioterapia/métodos , Porfirinas/farmacologia , Sorafenibe
2.
Virol J ; 18(1): 182, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34496903

RESUMO

BACKGROUND: Traditional medicines based on herbal extracts have been proposed as affordable treatments for patients suffering from coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Teas and drinks containing extracts of Artemisia annua and Artemisia afra have been widely used in Africa in efforts to prevent SARS-CoV-2 infection and fight COVID-19. METHODS: The plant extracts and Covid-Organics drink produced in Madagascar were tested for plaque reduction using both feline coronavirus and SARS-CoV-2 in vitro. Their cytotoxicities were also investigated. RESULTS: Several extracts as well as Covid-Organics inhibited SARS-CoV-2 and FCoV infection at concentrations that did not affect cell viability. CONCLUSIONS: Some plant extracts show inhibitory activity against FCoV and SARS-CoV-2. However, it remains unclear whether peak plasma concentrations in humans can reach levels needed to inhibit viral infection following consumption of teas or Covid-Organics. Clinical studies are required to evaluate the utility of these drinks for COVID-19 prevention or treatment of patients.


Assuntos
Antivirais/farmacologia , Artemisia/química , Extratos Vegetais/farmacologia , SARS-CoV-2/efeitos dos fármacos , Animais , Antivirais/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Coronavirus Felino/efeitos dos fármacos , Coronavirus Felino/crescimento & desenvolvimento , Extratos Vegetais/química , SARS-CoV-2/crescimento & desenvolvimento , Ensaio de Placa Viral
3.
Sci Rep ; 11(1): 14571, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34272426

RESUMO

Effective and affordable treatments for patients suffering from coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), are needed. We report in vitro efficacy of Artemisia annua extracts as well as artemisinin, artesunate, and artemether against SARS-CoV-2. The latter two are approved active pharmaceutical ingredients of anti-malarial drugs. Concentration-response antiviral treatment assays, based on immunostaining of SARS-CoV-2 spike glycoprotein, revealed that treatment with all studied extracts and compounds inhibited SARS-CoV-2 infection of VeroE6 cells, human hepatoma Huh7.5 cells and human lung cancer A549-hACE2 cells, without obvious influence of the cell type on antiviral efficacy. In treatment assays, artesunate proved most potent (range of 50% effective concentrations (EC50) in different cell types: 7-12 µg/mL), followed by artemether (53-98 µg/mL), A. annua extracts (83-260 µg/mL) and artemisinin (151 to at least 208 µg/mL). The selectivity indices (SI), calculated based on treatment and cell viability assays, were mostly below 10 (range 2 to 54), suggesting a small therapeutic window. Time-of-addition experiments in A549-hACE2 cells revealed that artesunate targeted SARS-CoV-2 at the post-entry level. Peak plasma concentrations of artesunate exceeding EC50 values can be achieved. Clinical studies are required to further evaluate the utility of these compounds as COVID-19 treatment.


Assuntos
Artemisininas/farmacologia , Extratos Vegetais/farmacologia , SARS-CoV-2/efeitos dos fármacos , Células A549 , Animais , Artemisia annua/química , Chlorocebus aethiops , Humanos , Células Vero , Tratamento Farmacológico da COVID-19
4.
Chin J Nat Med ; 18(8): 628-632, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32768170

RESUMO

D-Glycero-D-mannno-heptose 1ß, 7-bisphosphate (HBPß) is an important intermediate for constructing the core structure of Gram-negative bacterial lipopolysaccharides and was reported as a pathogen-associated molecular pattern (PAMP) that regulates immune responses. HBPß with 3-O-amyl amine linker and its monophosphate derivative D-glycero-D-mannno-heptose 7-phosphate (HP) with 1α-amyl amine linker have been synthesized as candidates for immunity study of HBPß. The O3-amyl amine linker of heptose was installed by dibutyltin oxide-mediated regioselective alkylation under fine-tuned protecting condition. The stereoselective installation of 1ß-phosphate ester was achieved by NIS-mediated phosphorylation at low temperature. The strategy for installation of 3-O-amyl amine linker onto HBP derivative can be expanded to the syntheses of other conjugation-ready carbohydrates bearing anomeric phosphoester.


Assuntos
Aminas/síntese química , Bactérias Gram-Negativas/química , Heptoses/síntese química , Lipopolissacarídeos/química , Compostos Orgânicos de Estanho/síntese química
5.
ACS Chem Biol ; 15(1): 171-178, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31573796

RESUMO

Glycosylphosphatidylinositols (GPIs) are complex glycolipids present on the surfaces of Plasmodium parasites that may act as toxins during the progression of malaria. GPIs can activate the immune system during infection and induce the formation of anti-GPI antibodies that neutralize their activity. Therefore, an antitoxic vaccine based on GPI glycoconjugates may prevent malaria pathogenesis. To evaluate the role of three key modifications on Plasmodium GPI glycan in the activity of these glycolipids, we synthesized and investigated six structurally distinct GPI fragments from Plasmodium falciparum. The synthetic glycans were conjugated to the CRM197 carrier protein and were tested for immunogenicity and efficacy as antimalarial vaccine candidates in an experimental cerebral malaria model using C57BL/6JRj mice. Protection may be dependent on both the antibody and the cellular immune response to GPIs, and the elicited immune response depends on the orientation of the glycan, the number of mannoses in the structure, and the presence of the phosphoethanolamine and inositol units. This study provides insights into the epitopes in GPIs and contributes to the development of GPI-based antitoxin vaccine candidates against cerebral malaria.


Assuntos
Adjuvantes Imunológicos/química , Antimaláricos/química , Proteínas de Bactérias/química , Glicosilfosfatidilinositóis/química , Malária Falciparum/prevenção & controle , Vacinas/química , Sequência de Aminoácidos , Animais , Anticorpos Antiprotozoários/imunologia , Citocinas/metabolismo , Etanolaminas/metabolismo , Feminino , Humanos , Inositol/metabolismo , Malária Falciparum/imunologia , Camundongos Endogâmicos C57BL , Modelos Animais , Plasmodium falciparum/metabolismo , Polissacarídeos/química , Conformação Proteica , Baço/metabolismo , Linfócitos T/metabolismo , Resultado do Tratamento , Vacinas/imunologia
6.
Biochim Biophys Acta Gen Subj ; 1862(7): 1592-1601, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29631057

RESUMO

BACKGROUND: Langerin, a C-type lectin receptor (CLR) expressed in a subset of dendritic cells (DCs), binds to glycan ligands for pathogen capture and clearance. Previous studies revealed that langerin has an unusual binding affinity toward 6-sulfated galactose (Gal), a structure primarily found in keratan sulfate (KS). However, details and biological outcomes of this interaction have not been characterized. Based on a recent discovery that the disaccharide L4, a KS component that contains 6-sulfo-Gal, exhibits anti-inflammatory activity in mouse lung, we hypothesized that L4-related compounds are useful tools for characterizing the langerin-ligand interactions and their therapeutic application. METHODS: We performed binding analysis between purified long and short forms of langerin and a series of KS disaccharide components. We also chemically synthesized oligomeric derivatives of L4 to develop a new high-affinity ligand of langerin. RESULTS: We show that the binding critically requires the 6-sulfation of Gal and that the long form of langerin displays higher affinity than the short form. The synthesized trimeric (also designated as triangle or Tri) and polymeric (pendant) L4 derivatives displayed over 1000-fold higher affinity toward langerin than monomeric L4. The pendant L4, but not the L4 monomer, was found to effectively transduce langerin signaling in a model cell system. CONCLUSIONS: L4 is a specific ligand for langerin. Oligomerization of L4 unit increased the affinity toward langerin. GENERAL SIGNIFICANCE: These results suggest that oligomeric L4 derivatives will be useful for clarifying the langerin functions and for the development of new glycan-based anti-inflammatory drugs.


Assuntos
Antígenos CD/metabolismo , Antígenos de Superfície/metabolismo , Dissacarídeos/metabolismo , Sulfato de Queratano/metabolismo , Lectinas Tipo C/metabolismo , Lectinas de Ligação a Manose/metabolismo , Antígenos CD/química , Antígenos de Superfície/química , Líquido da Lavagem Broncoalveolar/química , Citocinas/metabolismo , Células Dendríticas/metabolismo , Dissacarídeos/química , Dissacarídeos/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Ensaio de Imunoadsorção Enzimática , Galactose/metabolismo , Humanos , Sulfato de Queratano/química , Lectinas Tipo C/química , Ligantes , Lectinas de Ligação a Manose/química , Ligação Proteica , Isoformas de Proteínas/metabolismo , Enfisema Pulmonar/tratamento farmacológico , Enfisema Pulmonar/metabolismo , Proteínas Recombinantes/metabolismo
7.
Angew Chem Int Ed Engl ; 57(19): 5525-5528, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29465820

RESUMO

Active pharmaceutical ingredients are either extracted from biological sources-where they are synthesized in complex, dynamic environments-or prepared in stepwise chemical syntheses by reacting pure reagents and catalysts under controlled conditions. A combination of these two approaches, where plant extracts containing reagents and catalysts are utilized in intensified chemical syntheses, creates expedient and sustainable processes. We illustrate this principle by reacting crude plant extract, oxygen, acid, and light to produce artemisinin, a key active pharmaceutical ingredient of the most powerful antimalarial drugs. The traditionally discarded extract of Artemisia annua plants contains dihydroartemisinic acid-the final biosynthetic precursor-as well as chlorophyll, which acts as a photosensitizer. Efficient irradiation with visible light in a continuous-flow setup produces artemisinin in high yield, and the artificial biosynthetic process outperforms syntheses with pure reagents.


Assuntos
Antimaláricos/síntese química , Artemisia annua/química , Artemisininas/síntese química , Extratos Vegetais/química , Antimaláricos/química , Antimaláricos/metabolismo , Artemisininas/química , Artemisininas/metabolismo , Estrutura Molecular
8.
Chemistry ; 19(17): 5450-6, 2013 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-23520059

RESUMO

Isolation of the most effective antimalarial drug, artemisinin, from the plant sweet wormwood, does not yield sufficient quantities to provide the more than 300 million treatments needed each year. The high prices for the drug are a consequence of the unreliable and often insufficient supply of artemisinin. Large quantities of ineffective fake drugs find a market in Africa. Semisynthesis of artemisinin from inactive biological precursors, either dihydroartemisinic acid (DHAA) or artemisinic acid, offers a potentially attractive route to increase artemisinin production. Conversion of the plant waste product, DHAA, into artemisinin requires use of photochemically generated singlet oxygen at large scale. We met this challenge by developing a one-pot photochemical continuous-flow process for the semisynthesis of artemisinin from DHAA that yields 65 % product. Careful optimization resulted in a process characterized by short residence times. A method to extract DHAA from the mother liquor accumulated during commercial artemisinin extractions, a material that is currently discarded as waste, is also reported. The synthetic continuous-flow process described here is an effective means to supplement the limited availability of artemisinin and ensure increased supplies of the drug for those in need.


Assuntos
Antimaláricos/síntese química , Artemisininas/síntese química , África , Antimaláricos/química , Antimaláricos/farmacologia , Artemisia/química , Artemisininas/química , Artemisininas/farmacologia , Oxigênio Singlete
9.
J Am Chem Soc ; 130(49): 16791-9, 2008 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-19049470

RESUMO

The emergence of multidrug-resistant tuberculosis (TB) and problems with the BCG tuberculosis vaccine to protect humans against TB have prompted investigations into alternative approaches to combat this disease by exploring novel bacterial drug targets and vaccines. Phosphatidylinositol mannosides (PIMs) are biologically important glycoconjugates and represent common essential precursors of more complex mycobacterial cell wall glycolipids including lipomannan (LM), lipoarabinomannan (LAM), and mannan capped lipoarabinomannan (ManLAM). Synthetic PIMs constitute important biochemical tools to elucidate the biosynthesis of this class of molecules, to reveal PIM interactions with host cells, and to investigate the function of PIMs as potential antigens and/or adjuvants for vaccine development. Here, we report the efficient synthesis of all PIMs including phosphatidylinositol (PI) and phosphatidylinositol mono- to hexa-mannoside (PIM1 to PIM6). Robust synthetic protocols were developed for utilizing bicyclic and tricyclic orthoesters as well as mannosyl phosphates as glycosylating agents. Each synthetic PIM was equipped with a thiol-linker for immobilization on surfaces and carrier proteins for biological and immunological studies. The synthetic PIMs were immobilized on microarray slides to elucidate differences in binding to the dendritic cell specific intercellular adhesion molecule-grabbing nonintegrin (DC-SIGN) receptor. Synthetic PIMs served as immune stimulators during immunization experiments in C57BL/6 mice when coupled to the model antigen keyhole-limpet hemocyanin (KLH).


Assuntos
Mycobacterium tuberculosis/química , Fosfatidilinositóis/síntese química , Fosfatidilinositóis/imunologia , Polissacarídeos/química , Adjuvantes Imunológicos/síntese química , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/metabolismo , Animais , Moléculas de Adesão Celular/metabolismo , Inositol/química , Lectinas Tipo C/metabolismo , Camundongos , Fosfatidilinositóis/química , Fosfatidilinositóis/metabolismo , Fosforilação , Receptores de Superfície Celular/metabolismo , Propriedades de Superfície
10.
ACS Chem Biol ; 2(11): 735-44, 2007 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-18030990

RESUMO

Glycosaminoglycans (GAGs), such as heparin or heparan sulfate, are required for the in vivo function of chemokines. Chemokines play a crucial role in the recruitment of leukocyte subsets to sites of inflammation and lymphocytes trafficking. GAG-chemokine interactions mediate cell migration and determine which leukocyte subsets enter tissues. Identifying the exact GAC sequences that bind to particular chemokines is key to understand chemokine function at the molecular level and develop strategies to interfere with chemokine-mediated processes. Here, we characterize the heparin binding profiles of eight chemokines (CCL21, IL-8, CXCL12, CXCL13, CCL19, CCL25, CCL28, and CXCL16) by employing heparin microarrays containing a small library of synthetic heparin oligosaccharides. The chemokines differ significantly in their interactions with heparin oligosaccharides: While some chemokines, (e.g., CCL21) strongly bind to a hexasaccharide containing the GlcNSO3(6-OSO3)-IdoA(2-OSO3) repeating unit, CCL19 does not bind and CXCL12 binds only weakly. The carbohydrate microarray binding results were validated by surface plasmon resonance experiments. In vitro chemotaxis assays revealed that dendrimers coated with the fully sulfated heparin hexasaccharide inhibit lymphocyte migration toward CCL21. Migration toward CXCL12 or CCL19 was not affected. These in vitro homing assays indicate that multivalent synthetic heparin dendrimers inhibit the migration of lymphocytes toward certain chemokine gradients by blocking the formation of a chemokine concentration gradient on GAG endothelial chains. These findings are in agreement with preliminary in vivo measurements of circulating lymphocytes. The results presented here contribute to the understanding of GAG-chemokine interactions, a first step toward the design of novel drugs that modulate chemokine activity.


Assuntos
Quimiocinas/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Heparina/metabolismo , Análise Serial de Proteínas , Desenho de Fármacos , Ligação Proteica
11.
Curr Opin Drug Discov Devel ; 6(4): 521-5, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12951815

RESUMO

The past year has witnessed significant advances in a new technology for the synthesis of complex carbohydrates. Solid-phase methods have been applied to the construction of previously inaccessible carbohydrates. Furthermore, the application of automated solid-phase carbohydrate synthesis is promising. New methods for the synthesis of carbohydrates and potential applications are described in this review.


Assuntos
Carboidratos/síntese química , Vacinas/síntese química , Animais , Carboidratos/imunologia , Carboidratos/isolamento & purificação , Avaliação Pré-Clínica de Medicamentos , Humanos , Microcomputadores
12.
Org Lett ; 4(17): 2965-7, 2002 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-12182600

RESUMO

[reaction: see text] A short, high-yielding synthesis of the C-glucoside 8,10-di-O-methylbergenin is reported. Key elements of the synthesis are a stereoselective installation of a beta-C-aryl linkage, a palladium(0)-catalyzed aryl carbonylation, and a regioselective lactonization reaction. This pathway should allow access to a host of bergenin analogues.


Assuntos
Benzopiranos/síntese química , Antivirais/química , Glicosídeos , Lactonas/química , Monossacarídeos/síntese química , Paládio/química , Plantas Medicinais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA